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We study the relations between torsion, curvature, local flatness and sim-
plicity within the framework of e-connections by means of explicit formulas in
terms of the Christoffel symbols of the given e-connection.

1. INTRODUCTION

Let M be a differentiable manifold of dimension n and SF* (M) - M be
the semi-holonomic frame bundle of M of order k. An e-connection of order
k is a GL,(n,R)-invariant section of SF*(M) — FY(M) (our convention with
the order is different than the one in [10], [11] for notational convenience here).
They are first defined in [2] and are studied in [5], [10], [11]. It is shown in [2]
that there is a bijection between e-connections of order £ and linear connection
of order k—1. An e-connection (linear connection) is called simple in [10], [11]
if it is obtained from a first order e-connection (linear connection) by successive
prolongations. It is known ([10], [11]) that a linear connection is locally flat
if and only if it is simple and without torsion and curvature. Even though
the concepts of curvature, torsion and local flatness are well known within
the framework of linear connections, simplicity is relatively less known. This
latter concept is used in [3] in relation to mechanics to study second grade
materials. The same problem is studied in [1] by means of the inhomogeneity
tensor.

This note is resulted from an attempt to understand the interactions be-
tween torsion, curvature, local flatness and simplicity by means of explicit
formulas in terms of Christoffel symbols in the spirit of classical differential
geometry. The reason for our choice of e-connections is that, as we show,
their Christoffel symbols are conceptually very simple objects compared to
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those of linear connections. We define in this note also a dual e-connection
and give a necessary condition for a dual e-connection of arbitrary order to be
obtained from successive prolongations of a section of first order coframes, in
a sense to be made precise below. We also give a characterization of (dual)
e-connections which are prolongations of a second order (first order in [10],
[11]) flat e-connection. Our formulas are expressed explicitly in terms of the
Christoffel symbols of the given e-connection. As an interesting fact, the clas-
sical curvature tensor emerges in our formulas in a very natural way (see (9)
and (14)). The usage of two principle bundles here corresponds to fixing the
source and the targets of jets in groupoids. Further, there seems to be an
intimate relation between the formulas here and the first nonlinear Spencer
sequence defined in [9]. We hope to clarify this relation in some future work.
For details on this latter sequence and its applications in various branches of
mathematical physics, we refer the reader to, for instance, [8].

2. CHRISTOFFEL SYMBOLS OF e-CONNECTIONS AND DUAL ¢-CONNECTIONS

Let M be a differentiable manifold of dimension n and F*(M) — M
be the frame bundle of M of order k. The elements of F¥(M) are k-jets
of local diffeomorphisms with source at the origin of R" and target in M.
FX(M) — M is a right principal bundle with group GLg(n,R®). For the
details, we refer the reader to [10], [11] and the references therein. In this
note, we will need also the coframe bundle F¥(M) — M. The elements
of F¥(M) are k-jets of local diffeomorphisms with source in M and target
at the origin of R*. FF(M) — M is a left principal bundle with group
GLi(n,R). There exists a bijective map p : F*(M) — ﬁ’k(M) with the prop-
erty p(ua) = a™'p(u), u € F’“(M), a € GLy(n,R). Let T be a GL,(n,R)-
invariant section of F*(M) — F!(M). Such sections, called e-connections,
are defined in [2] in the framework of semi-holonomic frame bundles and are
studied in [2], [5], [10], [11]. They are known to be in one-to-one correspon-
dence with torsionfree linear connections on F*~1(M) — M, k > 2 (see [4]).
We will define here also a dual e-connection T as an GLi(n, §R) invariant sec-
tion of F*(M) — F*(M). Now let (¢, %%,...,5% ), (¢%,T%,..., 7, ) be
local coordinates on F*(M), F*(M) and T, T be two such invariant sections.
A straightforward computation using GL,(n, R)-invariance shows that there
existst functions I ,(z ) LT (z)and T (z ) ;T (z), called the

]1] Jie Jk Jijz a1 Jk

Christoffel symbols of T and I‘ which determine T and r locally by the for-
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mulas
[(z,2)} , = fil (@) E (1)
I(z,2)} . = I3 ; (z), for 2<m<k. (2)

See also [10] for (1). It follows from (1) and (2) that both sets of Christof-
fel symbols have consistent transformation rules under a coordinate change
¢:(z) = (y). Let p: GLg(n,N) = GL,(n,RN) be the projection homomor-
phism where we regard GL,(n,R) as a subgroup of GL(n,R) by the injection
GL,(n,R) = (GL;(n,R),0,...,0). Using the more suggestive notation (%)
for the section j;(¢), we have

PROPOSITION 1. The Christoffel symbols T% . (z),...,T% . (z) and

Jij2 LAl S R 1

F;l (@), ,1";1 . (z) are subject to the transformation rules

(g‘;’:) (6;,1‘;1,2(:::),..., i ,k(:c)) (8y)_1 (5;,1“;112( I L ]k(y)) (3)
p(2) 7 (e @) (5r) = (5 Thn - T ) @

where we are using the group operation of GLj(n,R) in the formulas (3)
and (4).

The proof of Proposition 1 follows in a straightforward way from (1) and
(2). Note that classical Christoffel symbols emerge from (4) for £ = 2. Com-
paring (3) and (4), we obtain

COROLLARY 1. Let T be an e-connection of order k with Chnstoﬁ'e] sym-
bols T% . (z),...,T% . (z). Then, the functions I . (z),. z) de-

Jijz YT Jie gk Jii2

fined by

SR A

(65T @), T (@) = (85,15, (2), o T, Jk(m))_1 (5)

determine a dual e-connection T' with Christoffel symbols F;m( z),...,
T, i (@).

J1-Jk

Let € (M) and €*(M) be the spaces of e-connections and dual e-connections
of order k. The following result generalizes geodesic coordinates to higher order
Christoffel symbols.
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PROPOSITION 2. Let T' € € (M) and p € M. Then there exists a coordi-
nate neighbourhood U containing p such that all the Christoffel symbols of
I on U vanish at p. The analogous statement holds for T’ € € (M).

The proof of Proposition 2 is immediate from (3) and (4). Note that if (z)
is geodesic for [ and T at p and (y) is arbitrary, then the Christoffel symbols
of ' and T at p with respect to (y) are given, respectively, by

9%y’ oz™ ox™= oy z™

dzmi - Ggme Oyit  Oyis and dz™ yit - - - Jyis

Thus we see that the Christoffel symbols of (dual) e-connections are con-
ceptually very simple objects compared to those of linear connections on frame
and coframe bundles which are related to differential forms and Lie algebras.
In fact, they are nothing but sections of frame or coframe bundles over M
(holonomic, semi-holonomic, ..., see below) twisted by their first order jets
from right or left.

Also, it follows from (5) that f‘;k = —f‘§k, but clearly f‘;lj # — I‘;l N
for s > 3 in general. A careful examination of the derivations of the classi-
cal formulas now shows, in our opinion, that &, = & + f‘;’;ﬁm and &, =
& + f‘};mf"‘, that is, classical covariant differentiation is somehow related to
inversion in GLsy(n,R).

Now, €*(M) and € (M) can be identified with the associated bundles
of F¥(M) — M and F*(M) — M where the left and the right actions
of GLi(n,R) on the kernel (1,BY,...,B}) of the projection homomorphism
GLy(n,R) — GL,(n,R) are given by the formulas (3) and (4) respectively.
With these identifications, Christoffel symbols become local coordinates on
the natural bundles & (M) — M and ¢ (M) — M and T', T become sections of
these bundles. Note that the kernel (1, BY, ..., B}) can be identified with the
left /right coset spaces L(G Ly (n,R)/GL;(n,R)), R(GLi(n,R)/GL,(n,R)) and
the above actions become standart actions of G Li(n,R) on these coset spaces.
Consequently, there is a one-to-one correspondence between the sections of
(M) - M, &(M) - M and GL,(n,R)—reductions on F*(M) — M,
Fk(M) — M. Also the bijection p : F*(M) — F*(M) induces a bijection
€ (M) — € (M) which is given locally by (5).

In the rest of this note we will concentrate on coframes but our arguments
remain valid for frames. The main reason for this is that the classical curvature
tensor, like classical Christoffel symbols, emerges in a natural way from second
order coframes and not from frames, contrary to one might expect.
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~ In order to drop the symmetry condition on the Christoffel symbols, let
SGLi(n,R) be the semi-holonomic jet group of order k and se*(M) be the
associated bundle of F¥(M) — M with respect to the action of GLy(n,R)
on the kernel of SGLy(n,R) — GL,(n,R) determined by (4). Clearly all the
above arguments remain valid for s¢* (M), except Proposition 2, which makes
essential use of symmetry. If I' € (M), then T will be called symmetric.
It can be shown that I' is symmetric if and only if the corresponding linear
connection is quasi-holonomic and torsionfree (see [10] for a proof in the case
of T'). Let SF*¥(M) — M be the semi-holonomic coframe bundle of M of
order k. If (U, z") is a coordinate neighbourhood and (fi(x),..., f; ; (z))is
a section of SF¥(M) — M on (U,z'), using the same notation for bundles
and their sheaves of sections, we define a map SF*(M) — sé (M) locally by
(ffreoafh i) = (Lgh fs o g fT ) where g f* = 0% and we omit z.
It follows from (4) that this map does not depend on the choice of coordi-
nates and is locally surjective by the definition of se*(M). We also have a
map F*(M) — J*! F'(M) which is locally given by (f}) = (f}, 05, f},-
05, -+ 05._, f},). Indeed, differentiating f} (z )ayJ = fily) k- 1 times, we
obtain (jr_1f)(y) * jx(¢) = (Jr—1f)(z) where * denotes the group operation
in SGL(n,RN) and ¢ denotes the coordinate change (r) — (y). The last
equality shows that J*~! F!(M) can be identified with a subset of SF*(M).
Composing this map with the above map, we obtain a differential opera-
tor ¥ : F'(M) — sé*(M) of order k — 1 which is locally given by (f5) —
(1,900, f7%, . - 195,05, - - - 0j,_, f7). In particular, if f;1] is symmetric in the
indices ji,...,js,—1 for s > 3, then this property does not depend on the choice
of the coordinates and defines a subbundle s,é*(M) of sé*(M) and we have
Imv C s,e¥(M).

Now let Diff(M,R") be the set of local diffeomorphisms from M into R™.
We also have the map I Diff(M,R") — F'(M) which is locally given by
a(ff) = ajfi-

To recapitulate, we have

PROPOSITION 3. We have a sequence of maps

DIff(M, R") 2 FL(M) -5 s,e* (M) (6)

where jl(f) = ajfi; 6(f;) = (lag:'najxf;ga"wgfnajl"'ajk—xf;::) and
Il = 65

DEFINITION. T € sé*(M) will be called locally flat if the Christoffel sym-
bols of I vanish identically in some coordinates.



SOME REMARKS ON THE CHRISTOFFEL SYMBOLS 177

The following proposition, whose proof is identical to the proof of Propo-
sition 2, gives a simple characterization of locally flat e-connections.

PROPOSITION 4. I € sé*(M) is locally flat if and only if T € Im(% o 7).

Now let I' € s,e*(M). There exists some f € F'(U) such that o(f) = Ty,
if and only if we can solve the nonlinear system of PDE

gfna‘h' ]s 1fm l 2§3§k7 (7)

11 Js )

for the functions f;. The equations (7) have the necessary integrability condi-
tions

d[le;Q]...js+1 = 0 (8)
where the differential expressions dle;2 jos: are defined by
- oT
1 _ J2.--Js+1 i m
djlrjg.--j3+1 - 633-71 + + Fjlijg Js41 (9)

Note that db f‘i]l gives the classical curvature tensor Rj;;. For k = 2, the op-

erator ¥ is first order and (8) is also sufficient to solve ¥(f;) = g, 9;, [ = f‘;l i
for fi. If [ is further symmetric, then we can solve ¥ o j; (f) = gmB]l(?J2 fm=

F;l ;, for f i and we recover the classical fact that I' is locally flat if and only

if it is symmetric and without curvature. Note that (8) can be derived also
from the first order system

gfnajl T ajs—lfT = rj'l...js , 2<s<k ) (10)
for the functions f,..., f;, ;. _ . Asan unpleasent fact now, the local formula

(ff,-- 7f1§~~jk—1) = (1,95,05, f2, ..., 90,05, f}, ;) does not give a well defined
operator F*¥~1(M) — sé*(M) for k > 3. Consequently, one faces the following
problem which we hope to clarify in some future work.

PROBLEM. Do the integrability conditions (8) have any intrinsic meaning
fork>37

In any case we will use (9) to give a characterization of e-connections which
are prolongations of a second order e-connection without curvature and give
an affirmative answer to the above problem in a special case. For m < k let
k1 sy (M) — 5,€™(M) be the projection map.
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PROPOSITION 5. Let T’ € s,é*(M) have Christoffel symbols f‘;'.k and sup-
pose that T" has no curvature, that is, (8) holds on M with k = 2. Then the

functions defined by

J1..-Js = dj1~~-js—2F;5_1js I 2 S S S k 7 (1]‘)

are the Christoffel symbols of some element of syé* (M), which will be de-
noted by P*(T'). Further, P*(I') € Im(0) and is locally flat if T' is symmetric.
Conversely, if ¥ € Im(v), then P*(r%(2)) = X.

The proof of Proposition 5 is easy using (7). It can be shown that P*(T') in
the above proposition coincides with the simple e-connection determined by r
in the sense of [10].

We will now slightly modify Proposition 5. It is easy to see that se*(M)—
M is an affine bundle. Let E*(M) — M be the model vector bundle with
local coordinates A} ;,,..., A . and E***1(M) — M be a subbundle of
E*(M) — M defined by X ; = --- = X . = 0for 2 < s < k. Then
{0} = E\(M) C E*(M) C --- C E*'(M) C E*(M) and E?(M) is the
(1,k) tensor bundle T} (M) of M. Finally, let fse®(M) = {T' € se*(M) :

7¥(') has no curvature}.

PROPOSITION 6. There exists a differential operator D : fs& (M) —
E*='(M) of order k — 2 which is defined by D(T') = T — P*(n§(T)). In
particular, if n¥(I') = P*(x%(T")), then D(T') € E¥~**1(M).

We refer to [7] for an exact differential sequence which extends Propositions
3 and 6 above.

Now, the expressions given by (9) can be formally derived as follows ([6]).
Let A, be the formal equality given by

oz 9°z™

dz™ Oxir --- Oxds
It is now clear that both sides of (13) have the same transformation rules

which are given by (4), an observation which has been our starting point.

Differentiating A, with respect to z” and formally substituting A, into ﬁs+1

and changing indices, we obtain (9). As an amusing fact, this derivation

requires no knowledge whatsoever except differentiation. Clearly, this formal

computation amounts to working with flat coordinates z'. There is also a trick
which is dual to the one above: Let B be the formal equality given by

~ . ozt 0z™ 0z™
B,: TI% . = T is
s d1e--ds ("1") Ozmi ... 9zms Prit oxis

A F;lu-j.s (IL‘) =

(12)

(13)
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Differentiating (14) with respect to z” and substituting B, and B,,,, we
obtain the differential expressions

~.

af‘]z Jst1
d, % . = Jdert y Tm P T TY . (19)

J17 J2---Js+1 Oxi Jij2= mjs.. ]+1 J1js417 J2..-Jsm

Note that d[] Fk]l already incorporates the classical torsion I‘[] K- I I‘[] ) =0

and we substitute I‘Jk = —F]k in d[]I‘k]l, we obtain d iy k- Note also the
interesting relation between (9) and (14) in view of covarlant differentiation
and I‘],c = —F]k Clearly, there seems to be no conceptual difference between
(9) and (14).

Now the case of frames can be studied along similar lines (with some bad
surprises along the way) but we will omit the details.

We will end with the following

PROBLEM. What is the relation of (9) and (14) to the operator D' in the
first nonlinear Spencer sequence

0 — Aut(M) 25 Iy (M, M) D T @ Ju(T) 2o A2(T*) ® Jp_\(T) ?

Note that this sequence incorporates frames and coframes at the same time.
We refer to, for instance, [8] for the details on this sequence.

ACKNOWLEDGEMENTS

I am indebted to my colleague and dear friend Alp Eden for his continuous encour-
agement during the preparation of this note.

REFERENCES

[1] pE LEON,M., EPSTEIN,M., On the integrability of second order G-
structures with applications to continuous theories of dislocations, Reports
on Math. Physics 33 (3) (1993), 419-436.

[2] EHRESMANN, C., Sur les connexions d’ordre superieur, in “Atti del V° Con-
gresso del Unione Mat. Ital.”, 1956, 326 —328.

(3] ELzANOWSKI, M., PRISHEPIONOK, S. , Connections on higher order frame
bundles, in “Proc. Collogium on Diff. Geometry”, Debrecen, Hungary,
to appear.

[4] KOLAR,I., Torsionfree connections on higher order frame bundles, in
“Proceedings Colloquium on Differential Geometry”, Debrecen, Hungary,
to appear.

[5] LIBERMANN, P., Connexions d’ordre superieur et tenseurs de structure,
in “Atti del Convegno Internazionale di Geometria Differenziale”,
Ed. Zanichelli, Bologna, 1967, 1-18.



180 E. ORTAGGIL

[6] ORTAGGIL, E., On a differential concomitant, 1986, unpublished.
[7] ORTAGGIL, E., On a differential sequence in geometry, to appear in Tr. J. of
Mathematics.
[8] POMMARET, J.F., “Partial Differential Equations and Group Theory, New
Perspectives for Applications”, Kluwer Academic Publishers, 1994.
[9] SPENCER, D.C., KUMPERA, A., “Lie Equations”, Vol. 1, General Theory,
Princeton, 1972.
[10] YuEN, P.C., “Sur Les Prolongements de G-structures”, These, Paris, 1970.
[11] YUEN, P.C., Higher order frames and linear connections, Cahiers de Topologie
et Geometrie Diff. 12 (3) (1971), 333-371.



