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We present a survey of some recent results about natural operations on the
r-th order tangent bundle and similar objects.

The r-th order tangent bundle T"M of a manifold M is the fundamental
structure of higher order mechanics, [3], [4]. It has been clarified recently that
several geometric properties of T" M are related with the fact that the functor
T" preserves products. Since 1986 it has been known in differential geometry
that all product preserving bundle functors are Weil functors and the algebraic
properties of the corresponding Weil algebras have many important geometric
consequences, see [11] for a survey. Moreover, the use of the Weilian approach
is unavoidable, if one is interested in natural operations in the sense of [11].
And we have to underline that in many situations “natural” is nothing but a
precisely defined synonym of a somewhat vague word “geometric”.

In the present paper we collect the most interesting results from [11] and
from some more recent papers on natural operations, which are closely related
with the higher order mechanics. We intend to present a rounded survey of
all basic relations between both subjects. In some cases our classification re-
sults imply that all natural operators were already constructed in the course
of previous concrete research — but even this can be of some interest for ap-
plications. The first three sections of the present paper are devoted to the
foundations of the Weilian approach. Then we discuss natural tensor fields of
type (1,1), prolongation of the Frolicher-Nijehuis bracket, certain types of tor-
sions, natural functions on T*T"M and natural operators transforming vector
fields from a manifold to a Weil bundle. The last section is devoted to the
idea of time-dependent Weil bundle and to natural (1,1)-tensor fields on such
a bundle. :

' This paper is in final form and no version of it will be submitted for publication elsewhere.
The author was supported by the grant No. 201/96/0079 of the GA CR.
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HIGHER ORDER TANGENT BUNDLES 107

All manifolds and maps are assumed to be infinitely differentiable.

1. BUNDLES OF (k,r)-VELOCITIES

In the higher order mechanics, the r-th order tangent bundle of a manifold
" M is defined to be the space T"M = JJ(R, M) of all r-jets from R into M
with source 0. More generally, one can construct the bundle of k-dimensional
velocities of order r on M by setting Ty M = J5(R*, M). For every smooth
map f: M — N, one defines T f : T{M — TN by

Ty f(Jog) = Jo(fog), g:RF — M.

Let Mf be the category of all smooth manifolds and all smooth maps,
F M be the category of all smooth fibered manifolds and their morphisms and
B : FM — Mf be the base functor. According to [11], a bundle functor on
Mf is a functor F' : Mf — FM satisfying B o F' = idps and the localization
condition below. In other words, FM is a fibered manifold p, : FM — M
for every manifold M and Ff is an F M-morphism Ff : FM — FN over
f for every smooth map f : M — N. The localization condition reads: if
i : U — M is the inclusion of an open subset, then FU = p;;(U) and Fi
is the inclusion py; (U) — FM. Clearly, T} is a bundle functor on M f and
T" =1T7. Moreover, T} preserves products, i.e.

Ti;(M xN)=T,M xT;N .

2. PrRoDUCT PRESERVING BUNDLE FUNCTORS

It has been clarified recently, see [11] for a survey, that the product pre-
serving bundle functors on Mf are something quite concrete — they coincide
with the so-called bundles of infinitely near points introduced by A. Weil, [14].
Consider the addition and the multiplication of reals

a:RxR—-R, m:RxR—R.
Every product preserving bundle functor F' on M f induces
Fa:FRx FR— FR,  Fm:FRx FR — FR.

We have the following injection 7 : R — FR. For every z € R, we consider the
map 7 : pt — R, which transforms a one-point set pt into z. Since F'(pt) = pt,
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we have FZ : pt — FR and we set i(z) = FZ(pt). One verifies easily that
FR is a real vector space with the addition of vectors Fa : FR x FR — FR
and the multiplication of vectors by reals Fmo (i x idpg) : R x FR — FR.
Moreover, the map Fm : FRx FR — FR is bilinear and endows F'R with the
structure of an algebra. The element (1) =: 1pg is the unit of FR.

On the other hand, consider the algebra R[t;,..., %] of all polynomials
in k variables. Denote by (ti,...,t;) the ideal of all polynomials without
absolute term and by (¢;,...,%)" its r-th power, which is the ideal of all
polynomials vanishing up to order » — 1 at the origin. By a Weil ideal we
mean an ideal A satisfying (t;,...,4)" ™ C A C (t1,...,t)>. The factor
algebra A = R[ty,...,t]/ A is called a Weil algebra, the number k is said to
be the width of A and the minimum of the r's is called the depth of A.

The following assertion is proved in [11], p. 308.

PRrROPOSITION 1. FR is a Weil algebra for every product preserving bundle
functor F' on Mf.

For example, in the case of the (k,r)-velocities functor T we have
TR = Rty,...,t]/({t1,..,t)""", which corresponds to the jet calculus.
Furthermore, for the second iterated tangent functor TT" we have TTR =
R[t1,t2]/(t},t3). This reflects the well known fact that the elements of TTR™

are the equivalence classes of maps g : R? — R™ characterized by g¢(0,0),
8g(0,0) 8g(0,0) 8%g(0,0)
oty ? Ota 7 Ot10ts

Conversely, every Weil algebra A = R[t;,...,t]/A determines a product

preserving bundle functor on M f as follows. Consider the algebra E(k) of
germs of smooth functions on R*¥ at 0. We have a canonical injection 7 :
Rt1,...,t] = E(k). The set i(A) generates an ideal A C E(k). Since A is a
finitely generated ideal, we have A = E(k)/A as well. Let M be a manifold.
Two maps g, h : RE — M, g(0) = h(0) = z, are said to be A-equivalent, if
pog—@woh€ A for every germ ¢ of a smooth function on M at z. Such an
equivalence class will be denoted by j4 g and called an A-velocity on M. The
point g(0) is said to be the target of j4 g.

Denote by TAM the set of all A-velocities on M. One sees easily that
TAR = A. The target map is a bundle projection TAM — M. Further, for
every f : M — N we define T4 f : TAM — TAN by T4 f(54g) = j4(f o g).
Then T“ is a product preserving bundle functor on M f, which is called the
Weil functor corresponding to A. The following assertion is proved in [11], p.
308.




HIGHER ORDER TANGENT BUNDLES 109

PROPOSITION 2. Every product preserving bundle functor F' on Mf is
the Weil functor corresponding to the Weil algebra FR, i.e. F = TTR.

Remark 1. The Weilian approach to product preserving bundle functors
on M f is unavoidable, if we are interested in their natural transformations.
If B is another Weil algebra, then all natural transformations T4 — TZ are
in bijection with the algebra homomorphisms A — B, see [11], p. 307.

3. THE EXCHANGE MAP

Consider two velocities functors T} and T;°. One verifies easily that the
following procedure defines a natural equivalence x of the iterated bundles
ka2 TF(TE M) — TP (T M). For every X = jSg(t) € TF(Tf M), t € R, we
have g(t) = 75(7 = h(t, 7)), 7 € R*, and we set Ky X = j5(55(t — h(t,7))) €
Ti(TfM). For k=1 =1 = s =1 we obtain the canonical involution of TT' M,
[8].

Analogously we construct a canonical natural equivalence ks : T2 (T4 M)
— TA(TBM) for every two Weil functors T4 and TB. Let k or | be the width
of A or B, respectively. Every X € TP?(TAM) is of the form X = 55 g(¢),
te R and g(t) = 74(7 — h(t,7)), 7 € R¥. Then we set

kX =345 (t = h(t, 7)) € TH(TPM).
In particular, for T2 = T we obtain a canonical natural equivalence
(1) k:TTA - TAT.

Let Mf,, be the category of m-dimensional manifolds and their local
diffeomorphisms. A natural bundle over m-manifolds is a bundle functor
F : Mf,, - FM, [13]. Obviously, the restriction of a bundle functor
Mf — FM to Mf,, is a natural bundle over m-manifolds. For every
vector field X : M — TM, m = dim M, one defines its flow prolongation
FX:FM — TFM by

0
FX = EIOF(exp tX).

In the case FF = T, we can construct the induced map T4X : TAM —
TATM. Using (1), we obtain x;; o TAX : TAM — TTAM. The following
result can be found in [11], p. 337.

PROPOSITION 3. We have TAX = k) o TAX.
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4. NATURAL (1,1)-TENSOR FIELDS

M. Leén and P. R. Rodrigues clarified the fundamental role of the canonical
vertical operator Jy : TT"M — TT"M, [4], which is a natural tensor field
of type (1,1) on M. For an arbitrary natural bundle F over m-manifolds, a
natural tensor field of type (1,1) on F is a system of (1, 1)-tensor fields Ly,
on FM for every m-manifold M such that the diagram

TFM 2 TFM

TFfl lTFf

TFN -, TFN

commutes for every local diffeomorphism f: M — N.

All natural (1, 1)-tensor fields on a Weil bundle F' = T can be constructed
as follows. Consider the multiplication p : R x TM — TM of tangent vectors
by reals. Taking into account FR = A, we have Fu : Ax FTM — FTM.
Using (1), we construct

Fu=ry oFpo(idy xky): AXTFM — TFM.

According to [12], each L(a)y := Fu(a,—) : TFM — TFM is a (1,1)-tensor
field on FM and the following assertion holds.

PROPOSITION 4. Every natural (1, 1)-tensor field on TAM is of the form
L(a)s for all a € A.

By the definition of the product ab in A, we obtain immediately

PROPOSITION 5. L(a) o L(b) = L(ab) for all a,b € A.

In particular, if 1, is the unit of A, then L(14)s = idrran-

In the case of the r-th order tangent bundle T"M, the canonical vertical
operator Jys corresponds to the class t + (t"™') € TTR. Hence Proposition 5
yields J;;* = 0. Moreover, Proposition 4 can be reformulated as follows.

PROPOSITION 6. All natural (1,1)-tensor fields on T"M are linear combi-
nations with constant coeflicients of idrr-pr, Jpry-- -5 Jpy-
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5. TORSIONS

In [12], the natural (1,1)-tensor fields on T4M were used for intvrod‘ucing
a kind of torsions. Every general connection I' : TAM — J'T4M can be
interpreted as a tangent valued 1-form v on T4M. For every a € A, the
Frolicher-Nijehuis bracket

[ ’L(G')M]

is a tangent valued 2-form on T4M, which is called the a-torsion of . If T is
the classical linear connection on TMand L(a) = Jys, we obtain the classical
torsion of I'.

In particular, for a general connection I' on the r-th order tangent bundle
T™M we have r torsions

(s Ty [ Tadls - [ T

The case r = 2 was studied in detail in [12].

6. PROLONGATION OF TANGENT VALUED FORMS

A tangent valued k-form on M is an antisymmetric multilinear base pre-
serving morphism
P:TM Xp--- XMTM—)TM

with k terms on the left hand side. For F = T, we have
FP:FTM Xpp -+ Xpmy FI'M — FTM .

Analogously to Section 4 we construct FP = k3 o FPo (kp X -+ X Kpr),
FP:TFM Xpp -+ Xpy TFM — TFM .

This is a tangent valued k-form on F'M, which is called the complete lift of
P, [1]. Hence even L(a)y o FP is such a form for all a € A.

If @ is another tangent valued [-form on M, the Frolicher-Nijenhuis bracket
[P, Q] is a tangent valued (k + [)-form on M, [11], p.69. Using some ideas by
J. Gancarzewicz, W.Mikulski and Z.Pogoda, [7], A.Cabras and the author,
[1], deduced the following formula, in which ab is the product in 4 of a, b € A.

PROPOSITION 7. [L(a)p o FP, L(b)p o FQ] = L(ab)p o F([P, Q)).
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In particular, for a = b = 14 we obtain [FP,FQ] = F([P,Q]). For an
arbitrary fibered manifold Y — M, a general connection I" : Y — J'Y can be
interpreted as a tangent valued 1-form v on Y. Then F+y defines a connec-
tion FT on FY — FM. The following assertion is a simple consequence of
Proposition 7.

PRrROPOSITION 8. FEach a-torsion of FI' vanishes, a € A.

Proof. We have [Fv, L(a)y] = [Fv, L(a)y oidrry] = L(a)y o F([v, idry]),
but [’)’, idTy] = O l

7. NATURAL FUNCTIONS

For every natural bundle G over m-manifolds, a natural function A is a
system of functions hy; : GM — R for every m-manifold M such that h,, =
hy o Gf for every local diffeomorphism f : M — N. For example, if we
consider the Liouville form of T*M as a function TT*M — R, then this is a
natural function on T7T™.

We are going to describe all natural functions on T*T". Denote by A}, :
T"M — TT"M the generalized Liouville vector field, which is tangent for
k =1 to the reparametrizations

Jo9(t) = jgg(kt), g:R—>M, keR.
Define A}, : T*T"M — R by
(2) Ay (w) = Ny (qu),w), weTT™M,

where g : T*T"™M — T"M is the bundle projection. Obviously, X! is a natural
function on T*T". Furthermore, we set

A= gLl k=2

and we define A%, : T*T"M — R in the same way as in (2). In [9], the following
assertion is proved. ‘

_ProposITION 9. All  natural functions on T*T" are of the form
h(A\',..., ") with arbitrary smooth function h : R" — R.

In particular, for r = 1 we have a natural identification T*TM ~ TT*M,
[11], p. 229. Thus, in this case all natural functions are of the form A(\) where
h is any smooth function of one variable, Ay, is the Liouville vector field of

TM and Xy is constructed as in (2).
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Remark 2. F.Cantrijn, M. Crampin, W. Sarlet and D. Saunders established
a natural equivalence T*T" =~ T"T* for every r, [2]. However, M. Doupovec
and J. Kurek have deduced recently, [6] that there is no natural equivalence
between T*T} and Ty T* for k > 2. These results characterize an interesting
difference between the r-th order tangent functor 7" = 717 and the (k,r)-
velocities functors &k > 2.

8. NATURAL OPERATORS ON VECTOR FIELDS

The important role of the algebra F'R in the geometry of a product preserv-
ing bundle functor F' on M f can be clearly seen, when we study the natural
operators transforming vector fields on a manifold M into vector fields on F'M.

In general, let G be a natural bundle over m-manifolds and C*°T M denote
the set of all smooth vector fields on M. A natural operator D : T' — TG is
a system of maps Dy : C°TM — C*°T(GM) for every m-manifold M such
that

(i) DNy(TfoX o f™)y=TGfoDyX o (Gf)~! for every X € C®TM and
every diffeomorphism f: M — N,

(ii) Dy(X|U) = (DyX)|GU  for every X € C®°TM and every open subset
UcCM,

(iii) every Dy, is regular, i.e. D, transforms every smoothly parametrized
family of vector fields into a smoothly parametrized family.

For example, in the case G is the tangent bundle T', one constructs easily
three such operators

1) the flow operator T,

2) the vertical operator V', which extends every vector field X on M into
a vector field Vi (X) on TM by means of the translations in the individual
fibers of TM,

3) the constant map X — A, into the Liouville vector field. By [11], p.
356, all natural operators T' — T'T" are of the form

(3) ClT+CZV+03A, C1,C2,C3 € R.

In the case of an arbitrary Weil functor T, we have to consider the group
Aut A of all algebra automorphisms of A and its Lie algebra Aut A. Every
D € AutA is of the form D = Z|46(t), 6(t) € Aut A. By Remark 1, every
5(t) determines a natural transformation §(t) : T4M — T4 M. The induced
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vector field A\Y; will be called the D-Liouville vector field on TAM, D € Aut A.
On the other hand, if we take the flow prolongation 74X of X € C*TM and
any a € A, then L(a)y o TAX is also a vector field on TAM. In [11], p. 356,
the following result is deduced. -

PROPOSITION 10. All natural operators T — TT* are of the form
(4) L(a)oT*4+\P forall a€ Aandall D cAutA.

In (3), the classical Liouville vector field A corresponds to the canonical
basis of 1-dimensional space JutA and V =Jo T.

In the case of the r-th tangent functor 7", (4) represents a (2r + 1)-
parameter family

T "+ JoT 4+ -4, J oT +cppt A + -+ oA, coy...,Cr ER.

9. TIME-DEPENDENT WEIL BUNDLES

Generalizing the concept of time-dependent tangent bundle TM x R from
the non-autonomous dynamics, M. Doupovec and the author introduced the
time-dependent Weil bundle Tg' for every Weil algebra A. This is a bundle
functor on Mf defined by TgM = TAM x R for every manifold M and
T f = TAf x idg for every smooth map f.

All natural (1,1)-tensor fields on T3 are determined in [5]. Let dt be the
canonical 1-form on R. Every Liouville vector field ¥, defines a natural (1,1)-
tensor field A\f; ® dt on T M, D € Aut A. Moreover, every L(a)y induces
a natural (1,1)-tensor field L(a)y on Tg M, a € A, by means of the product
structure on T2M x R. In the same way, the identity of TR defines another
natural tensor field (idyr)y on TAM. In the following assertion, which is
proved in [5], we do not distinguish between a real function R — R and its
pullback TAM x R — R.

PROPOSITION 11. All natural (1,1)-tensor fields on Ti' are linear combi-
_ nations of -
L(a), \P @ dt, idqg, a€ADcAutA,

the coefficients of which are arbitrary smooth functions on R.
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