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1. INTRODUCTION

The Cartan’s interpretation of torque stress in stress space of continuum
mechanics compute the torque stress and torsion components of a twisted
long cylinder which is equivalent to a screw dislocated cylinder. This result
is in agreement with previous results obtained by Eshelby without involving
non-Riemanniam geometry.

In 1922 Elie Cartan [4] laid the foundations of the aplication of non Rie-
mannian Geometry to continuum mechanics on a paper entitled : “Sur une
generalisation de la notion de Courboure de Riemann et spaces a Torsion”. In
this paper Cartan present two important ideas concerning torsion of space and
continuum mechanics. The first one was connected to the fact that couples
(torques) would be associeted to the idea of torsion and the other that the
Cosserats [5] conditions of equilibrium of continua would lead to the vanishing
of the couple and consequently to the symmetry of stress tensor. Later Kondo
[9], Bilby[3] and Kroner [10] applied Cartan’s idea to dislocated crystals, In
this note We shall be concern with the Minagawa - Amari [14, 1, 2] idea of
the Dual non-Riemannian Geometry to compute the dual torsion of a twisted
cylinder via the torque stress-torsion link. As pointed out recently by Kroner
[11]: “ ... Riemann-Cartan geometry describes dislocations in the form of Car-
tan’s torsion of the strain-space ... and the specific response to dislocations
in torque stress which arises as Cartan’s torsion of stress space ...”. Kroéner
remark guides us on the application of the non-Riemannian geometry to the
investigation of a twisted cylinder. Also as pointed out by Eshelby [6] the
twisted of a cylinder leads to screw dislocation which agrees with our com-
putation here. In a dualistic non-Riemannian theory of stresses their authors
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[14, 1] work with a 3"¢ rank couple stress p;;i, here. However we make use of
the 2"¢ rank torque stress tensor 7;;, both of them are related by the expression
Tij = €jr i Devertheless with aproaches are equivalent.

2. THE DUAL STRESS SPACE AND CARTAN’S TORSION OF A TWISTED
CYLINDER

Let us consider the Cosserats [5] brother’s formula for the equilibrium state

Vio=0 (1)

V.r+8=0, 2)

where o is the stress tensor 0 = o;; and & = (0; = €;;,0;) is the skew-
symetric part of the torsion tensor [12], and 7 = (7;;) is the torque stress. In
fact formula (2) can be writen in component form as

0iTij + €jro = 0, 3)
which is equivalent to Amari’s formula
Oipiiji + o(jr = 0, (4)

where p;;; is couple-stress of space and [12] 7;; = €;pglpg;- Formula (4) or
(3) agrees with Cartan’s hypothesis (ii) since from the Einstein’s equations of
continuum mechanics

Glij) = 0lij] = Orbrijs (5)

where G[;;) = 7€"°'€" R}, 4y, is the skew-symmetric part of the Einstein tensor.
One can express the couple stress as

1 ~
Hplk = Eep”etlksrst, (6)
by using the identity [14]
N 1~
0iiSjkim = §R[ijk]m- (7)

Substituition of second equality in (5) into (3) yields

1. ~
61;(Tij - 56"3 rsj) =0. (8)
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A particular solution of the differential relation (8) is
Ti; = lei”g i + const = loz-- 9)
) 2 8] - 2 1]
where o;; represents the dislocation density in the continuum theory of defects
[10].
In linear approximation it is possible to consider a relation between Nye’s
curvature Ky, and torque stress of the form [12]

Tij = Aijlekla (10)
where A;jr = 6100 + a20;,0351 + a36;0,;. For the choice of constants a; =
1,a; = 1,a3 = —1 one obtains the Nye’s relation [15]

1 1
T = —Kgj) + ETinkl = 5% (11)

which agrees with relation (9). For this choice of the ajs constants one obtains
~ 1 .
Spaj = 2€ipg(Opwy) + EV.w) + const, (12)

since Ky = Opyw; and w; = €Wy, = €4,0.Uy), where Uy, is the strain vector
and (w; = &) is the rotation vector. Since & = Vx@, V. = 0 and (12) reduces
to

Spej = 2€;pq0jiw;) + const. (13)

Let us now compute the dual torsion of a twisted cylinder where no external
forces act and a torque stress diferent from zero. In this example as whe shall
notice the stress tensors are symmetric and formula (3) reduces to

8irij = 0, (14)

which has as a particular solution 7;; = const. From expression (9) one may
conclude that the dual torsion is constant. Another way of showing that,
although not o straightforward is to consider formula (13) and compute the
rotation vector of the twisted cylinder from the strain vector of the Rod [13]
we have

Ug = —Tyzy Uy = Tgzy Uz = Tl()b(x,Y)av (15)

where 7 is the twist angle and ¥ (x,y) is the torsion function. Computation of
the rotation vector yields

wz = T(dyy — x), (16)
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wy = —7(%:% +y),
w, =Tz.
Substitution of (16) into (13) yields
Spzo = Spa1 = —[TV?] + const. (17)

The other components of the dual torsion vanish identically. The proof of
the constancy of the dual torsion comes from the fact that the first Cosserat
equation 0;0;; = 0 applied to the twist function of the Rod yields

V24 = 0. (18)

Of course substitution of (18) into (17) yields S = const.. Note that if we
choose ¢ = tan™'(£) as a solution for (18) we have V?U, = 0 and our solution
is very similar to the screw dislocated cylinder [8]. Computation of the dual
torsion in the case of dislocated cylinder reads

5 _ub

Yz — 271'.

If one takes into account Eshelby’s [6] argument that the twist of a cylinder
produces screw dislocations and vice-versa then Sggo = Spwise from (17).

(19)

Since the dislocation density o = —% and b = % from (17), one has
gtwist
= . 20
« % i R2 ( )
But from the non-Riemannian theory of stresses the torque stress
M ~
TR2 = Stwist; (21) .

where M is the external couple to the rod. Therefore from (21) and (20) one
obtains :
M
= 22
Expression (22) is the Eshelby’s [6] formula for the twist per lenght of a
dislocated rod. Therefore, making use of the non-Riemannian theory of dual
stress and strains it is possible to obtain an expresgion for the twist of a rod



CARTAN’S DIFFERENTIAL GEOMETRY 63

undergoing plastic deformation. An interesting example of how to construct
a rod with curvature and torsion has been given by Eshelby [6] which consists
of marking out a thin straight rod in the material and cut it out. This rod
is dotted with curvature and torsion due to the relaxatioon of internal stress.
Other examples of torque stresses in materials has been given by E.Kroner in
the linear approximation where equation (10) is valid [12]. !
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