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Liquid crystals consist of form-anisotropic particles which posses in most
cases a uniaxial symmetry but in general the particles have a biaxial shape.
We want to show how both cases can be treated within a uniform mathemat-
ical model. This model can be used to obtain a set of “mesoscopic” balance
equations containing the orientation as additional variable. Introducing an
orientation distribution function (ODF) for the rotational degrees of freedom
the moments of the ODF — called alignment tensors — can be used as order
parameters of the liquid crystal. Constitutive equations are formulated on the
mesoscopic level and can be lifted to macroscopic fields by an averaging pro-
cedure. The resulting equations are valid for the whole physical range of the
order parameters, covering the isotropic phase as well as the completely or-
dered nematic phase. To demonstrate the usefulness of the method we shortly
discuss the viscous properties of nematic liquid crystals.

INTRODUCTION

Liquid crystals are examples of continua with micro-structure. They ex-
hibit at least one mesophase which is liquid but show additional properties
usually associated with crystalline structures (e.g. spontaneous birefringence).
These are caused by a long-range order of orientations of the non-spherical con-
stituents (molecules in thermotropic liquid crystals or “micells” in lyotropic
liquid crystals) whereas the fluid-like behaviour is due to the uncorrelated
distribution of centers of mass over long distances.

Mathematical models of liquid crystals are obtained by regarding the par-
ticles forming the fluid as rigid bodies which are subjected to some kind of
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statistics characterizing the local degree of order of their molecular axes. In
most of the cases the model can be further simplified by assuming additional
symmetries as axial symmetric shapes of the particles, often in connection with
a “head-tail” (inversion) symmetry. However, during the last ten years lig-
uid crystals have been found which are clearly built up by biaxial particles|7].
Thus it is advantageous to describe both classes of liquid crystals in a gener-
alized framework which can be specialized to obtain nematic liquid crystals of
rod-like particles or liquid crystals with internal lower symmetries.

1. MATHEMATICAL MODEL

1.1. CONFIGURATION SPACES. The orientation of a rod-like structure
can be described by a single unit vector n. However, if the local distribution
of particles does not distinguish between orientations n and —n (or if the par-
ticles themselves posses such a symmetry) we have a superimposed symmetry
which is represented by choosing the real projective plane RP? to classify the
orientation. Thus a natural configuration space for nematic liquid crystals is
(including the degrees of freedom of displacement of the centers of mass)

CS; =R xRPZ. (1)

The index refers to the fact that the constituents posses a uniaxial symmetry.
For biaxial particles the orientation of the molecular axes can be described
by elements of the proper orthogonal group SO(3). Thus our most general
configuration space treated here is

CS; = R3 x SO(3) . (2)

However, in both the cases the orientational part of CSy (k € {1,2}) is nei-
ther orientable nor simply connected which complicates the formulation of
balance laws. Using the fact that RP? and SO(3) can be covered by $? and
S3, respectively,

S%/7,=RP? | $3/7.,=S0(3)
the substitution of CSy by its (universal) covering yields
CSL=R3 xSk (ke {1,2)). (3)

as new configuration spaces endowed with an inherent symmetry due to the
lift of physical quantities (defined in CSy) to CS;. It should be noted that the
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projection 7y of the bundle (CSy, CSy,7ty) can be chosen in such a manner
that all balance laws and constitutive equations have to be invariant under the
substitution of —n € S¥ for n € S* which is often called “nematic symmetry”.
For details we refer to [9].

1.2. ORIENTATION DISTRIBUTION FUNCTION. To describe the orienta-
tional order of the anisotropic fluid at given time and position a one-particle
distribution function called orientation distribution function (ODF) is intro-
duced

fi: CSp — RY (4)

which is normalized and symmetric on CS;, according to

§ flm, ) dn =1 5)
Sk
f(&) —n, t) = f(Z‘., n, t) . (6)

Thus fi(x,n) can be interpreted as probability density describing the orienta-
tion of all particles in a spatial volume element located at position x at time
t.

1.3. KINEMATICS IN CS;.. Using the “nematic spaces” CSy, the evolution
of the liquid crystal is traced with respect to spatial translations as well as to
orientational changes. Thus, a transport theorem in CSy is needed.

PROPOSITION 1. Let & be a (time dependent) region in CSj, and X €
C! (CS;.) a function. Let the evolution of ® be given by velocity fields (v, 1)
of the tangential bundle TCS,. We denote the covariant derivatives of the
Levi-Civita connection on R® and S* with V, and V., respectively. Then

Sl xmnuanex =[] {fxtmn 0+ v pmn Xm0
) ° ™)

V- (o, HX(x, n,t))} d*n dx

is valid.

Applying this theorem to material volumes in CSy (or “modified bodies”, see
(3, 4, 5, 6]) balance equations on nematic space can be obtained.
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1.4. ALIGNMENT TENSORS. Although the knowledge of the ODF fy is
sufficient to calculate the properties of a liquid crystal concerning orientation,
fi itself is unknown in most cases. Thus, a set of (tensorial) order parameters
called alignment tensors [12, 13, 15] is introduced.

PROPOSITION 2. Let f € 1?(S¥) be a square-integrable function on the
k-dimensional unit sphere with k > 2. Then the symmetric irreducible tensors
{m-- ' }gen form a basis of 12(S*) and f can be expanded in a series (denoting
| S —

¢ copies
Cartesian components with Greek indices and using summation convention for
them)

> ze+k—1 I —
Z k— 1! Quype Ty~ My

f(n) =

=1

Here, A(k) denotes the surface area of the sphere S* (in fact A(2) = 4m and
A(3) = 27'(2), and fo, ay, ., are given by

fo = jl; f(n) d*n ,

Sk
a = jgf(n)n n,, dn
H...Hg = 23] He

Sk

as the moments of f.

In the case of the ODF fy the odd moments vanish (because of the symmetry
of fy). The remaining moments are called the alignment tensors of order ¢,
where £ runs through all even integers.

In many physical situations only a few of them (e.g. only a) are relevant
and experimentally available. Thus the problem of obtaining fy can often
be reduced to the task of determining the alignment tensor of second and
sometimes of fourth or higher order.

2. BALANCE EQUATIONS.

In the spirit of a mesoscopic theory of liquid crystals[3, 4, 5, 6, 9] balance
equations on CS;, are needed. For more details see the references listed above,
here we restrict ourselves to the presentation of the resulting equations.
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The general case of an orientational balance equation is formulated as (the
argument (x,n,t) is suppressed)
0
5 X+ Ve (VX +J%) + Vi - (uX + %) = Prod(X) (8)
with J and Jy denoting spatial and orientational non-convective fluxes of X,
respectively, and Prod(X) referring to production and supply of X. Special
cases are listed below.

2.1. MaAss. X = p(x,n,t) mass density per orientation
Ix= 0
I“ =
Prod(X) 0

2.2. MOMENTUM. X = p(x,n,t)v(x,n,t) momentum density per orien-
tation

I% —ET(L,E t) (transposed) pressure tensor per orientation
Ix= —lT x,n,t) (transposed) pressure tensor per orientation on S*

Prod(X) = p(x,n, t)k(x,n, t) external force density per orientation

2.3. ANGULAR MOMENTUM. X = p(x, n,t)(x xv(x,n,t)+ 0 u(x, g,t))
angular momentum density per orientation, @ tensor of inertia -
X=tT(x,nt) xx+mx'(x,1n,t)
torque density due to stresses and couple stresses
k=TT(x,n,t) xx+0"(x,n,1)
torque density due to stresses and couple stresses on S*

Prod(X) = p(x,n, t)x X k(x,n, t) + m(x,n, t)
torque density due to external forces and couple forces

2.4. ENERGY. X = p(x,n,t) (%yz(x,g,t) + %Q Tuu+ e(x,n,t))
angular energy density per orientation, e(x,n,t) internal energy per orienta-
tion
Ix = —v(x,n, t) - tx,n,t) —ulx,n,t) - n(x,n,t) — q(x,n,t)
energy flux density due to stresses and ‘couple stresses and heat flux density
Ix = —v(x,n,t) - T(x,n,t) —u(x,n,t) - M(x,n,t) — Q(x,n, t)
their counterparts on S¥
Prod(X) = p(x,n, t)k(x,n, t) - v(x,n, t) + m(x,n,t) - u(x,n,t) + r(x,n, t)
power due to external forces and couple forces and radiation supply
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2.5. “ORIENTATION”. X = f(x,n,t) orientation distribution function
k=90
Ix=90
Prod(X) = —f(x,n,1) (F +v(x,n,1) - V) log p(x, t)
Here,

p(x,n,t) = f(x,n,t)p(x,t) 9)

connects mass density per orientation and (macroscopic) mass density of the
liquid. The last balance equation is obtained from the orientation mass balance
using this definition and the equation of conservation of mass.

Finally, we remark that balance laws on R3 can be obtained by integrating
the balances on CS;, over S [4]. They have the usual form of balances of a
micro-polar medium.

3. CONSTITUTIVE EQUATIONS.

Physical fields are tensor fields defined on (subsets of) R3. Thus, con-
necting them with orientational variables is simple in the case of nematics
(represented by CS}]) where {—n,n} are 3-vectors. However, for biaxial par-
ticles the orientational variables are 4-vectors and we have to lift all 3-tensor
fields to 4-tensor fields.

3.1. PROJECTIONS AND LIFTS FOR CS). We restrict the discussion on
the orientation part of CS). Let

R0} - §?
n
n - fi==— 10
- - Ml 10
be the restriction to unit vectors,
inv: $3 — §3
n — sgn(n-ein (11)

be an inversion and
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the projector along the 4-direction with {e;}i=1234 denoting the Euclidean
basis of R*. Using the Levi-Civita tensor £ we define a projection
7: D3 — SO(3)
n +— exp(neg-Psoinv(n)), (13)

from the closed unit ball in 3 dimensions to SO(3). Then the following diagram
commutes and (S3,SO(3),7) is a universal covering.

3 4 g3 T RAI\[0) —"y R

T(J( P4oinv J(P 1P4

SO(3) « D3 « D3 — 5 R

7t id L

Regarding R? as linear subspace of R* we denote the canonical embedding by
E: R R ie.

Pyo& = idgs . (14)

DEFINITION 3.1. The lift of a 3-tensor field A, of order £ to R* shall be
denoted by A}. Using Cartesian coordinates we define

T = ...
Aul---uc = Pay,, P4VeueAVl--Ne .

Now a term like n - (Viv)T - = P4(n) - (Vxv) - P4(n) has a well defined
meaning without adding or neglecting any information and we can use the
same methods in the constitutive theory of biaxial liquid crystals as before in
the case of nematics.

3.2. APPLICATION: VIscosITY COEFFICIENTS. For simplicity we spe-
cialize in this paragraph to nematic liquid crystals described by CSj (this is
only a brief sketch of the necessary calculations, for a detailed treatment see
[8]). The crucial quantity describing viscous properties of liquid crystals is
the friction-pressure tensor p. Choosing a non-equilibrium state space on CS;

Z={n,N,D, Vx-v} with
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and decomposing p,. in its isotropic, skew-symmetric and symmetric traceless
parts the general form linear in derivatives of v is [14]

'DT1 = —ZTlordeu _zﬁc])rd nyny D7\u nyny DML _zﬁgrd nvNy

— 273 myny Many Dac — 8 muny Vava
Pv)® =¥ (y N+ 954 (o Do) (18)
1
3Pm = NIV — K, Dy (19)

Measured viscosities are derived in flow experiments with constrained geome-
try. One example are the so-called Miesowicz viscosities measured in a plane
Couette flow (simple shear flow) under the influence of a strong magnetic field.
The magnetic field is used to overcome the influence of the flow on the mean
orientation of the molecules, described by a “director” d. Thus it is possible to
distinguish three main viscosities according to the orientation of the director
d with respect to the flow field

m: d parallel to the flow direction
n2: d parallel to the “gradient” direction
n3: d orthogonal to flow and gradient direction.

These are the Miesowicz viscosities, they can be expressed as linear combina-
tions of the viscosity coefficients introduced in Eqs. (17 — 19).

Integrating Eqs. (17 — 19) over S? and taking into account the special flow
geometry we obtain for an ODF f; with symmetry axis d (ie. fi1(x,n,t) =
fi(x,In- df, t))

1

m= ord 4 <

1
=SA + 2S;ford ]25 <1 + 552 E54> g
(20)

1 1
+ = 2+S) Vv + - szy

12
1 1 -
2 = rlord + lszﬁ‘]) _ _Sz~ord 2 1+ 532 _254 ord
6 2 15 7 (21)
1 ord 1 ord
]2 (2+S2) 7§ ZSZYZ
1. . 2 10 3 -
n3 =n — gs Ord + E (] . —S,+ 54) ord
R (22)
(] _ SZ) ord

4
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Here, S; and S4 denote the averages of the second and fourth Legendre poly-
nomials with respect to fj. S, is usually refered to as Maier-Saupe order
parameter. In an ordered state with complete alignment we have S; =S4 =1
and Egs. (20 - 22) reduce to Eqgs. (17 - 19).

After having chosen a suitable model for the “ordered” viscosities (as the
affine transformation model [10, 11, 1, 2]) these viscosities can be compared
with experimentally obtained values. Such a comparison can be found in [8].

CONCLUSIONS

The description of liquid crystals within a mesoscopic model containing the
orientation as additional variable allows a systematic treatment both on the
levels of balance equations and constitutive relations. Physical fields are ob-
tained by averaging the mesoscopic quantities with an orientation distribution
function. There the introduction of universal coverings is advantageous and
‘allows a uniform formalism suitable for uni- and biaxial particles. Symmetries
of the ODF (as in the case of nematic liquid crystals of uniaxial molecules)
simplify the resulting constitutive laws on R3 and include order parameters in
a natural way.
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