Directional Uniform Rotundity in Spaces of Essentially Bounded Functions[†]

Manuel Fernández and Isidro Palacios

Dpto. de Matemáticas, Univ. de Extremadura, 06071-Badajoz, Spain

(Presented by J.M.F. Castillo)

AMS Subject Class. (1991): 46B20

Received August 20, 1995

In this paper, we prove a formula for the directional modulus of rotundity of $L_{\infty}(X)$, where X is a normed space. As a consequence, we obtain a complete description of the uniform rotundity directions of such a space, and generalize to the vector case the corresponding scalar results of R.R. Phelps [1] and V.I. Zizler [3].

Let X be a normed space. As usual B_X and S_X denote respectively, the unit closed ball and the unit sphere.

The space X is said to be uniformly rotund in the direction $z \in X$ (in short, $UR \rightarrow z$) if the directional modulus of rotundity

$$(1) \qquad \delta_X(\to z,\epsilon) = \inf\left\{1 - \left\|x + \frac{\lambda}{2}z\right\| \ : \ x, x + \lambda z \in B_X, \ \|\lambda z\| \ge \epsilon\right\}$$

is strictly positive for every $0 < \epsilon \le 2$.

Let (T, Σ, μ) be a positive measure space and X a normed space. The function $x \colon T \to X$ is said to be simple if there exist $T_1, \ldots, T_n \in \Sigma$, and $x_1, \ldots, x_n \in X$ such that $x = \sum_{i=1}^n x_i \chi_{T_i}$, where χ_{T_i} is the characteristic function of T_i . The function $x \colon T \to X$ is defined as measurable if, for every finite measurable set F, there exists a sequence of simple functions $\{s_n\}_{n \in \mathbb{N}}$ such that $x\chi_F = \lim_{n \to \infty} s_n$ almost everywhere [2].

We use $L_{\infty}(X)$ to denote the space of equivalence classes of measurable functions $x \colon T \to X$ such that $t \in T \to \|x(t)\|_X$ is essentially bounded. It is a linear space normed by $\|x\| = \operatorname{ess\,sup}_{t \in T} \{\|x(t)\|_X\}$, where ess sup denotes the essential supremum of the function x.

The main result is a formula for the directional rotundity modulus of $L_{\infty}(X)$.

[†]A full version will appear in *Proc. Amer. Math. Soc.*

THEOREM 1. Let $z \in S_{L_{\infty}(X)}$. Then

(2)
$$\delta_{L_{\infty}(X)}(\to z, \epsilon) = \underset{t \in T}{\operatorname{ess inf}} \{ \delta_X(\to z(t), \epsilon || z(t) ||_X) \}, \quad 0 \le \epsilon < 2,$$

where ess inf denotes the essential infimum.

COROLLARY 2. The rotundity modulus of $L_{\infty} := L_{\infty}(\mathbb{R})$ in the direction $\zeta \in S_{L_{\infty}}$ is

(3)
$$\delta_{L_{\infty}}(\to \zeta, \epsilon) = \frac{\epsilon}{2} \operatorname{ess\,inf}\{|\zeta|\}, \quad 0 \le \epsilon < 2.$$

Next we provide a complete description of the uniform rotundity directions in the space $L_{\infty}(X)$.

THEOREM 3. Let X be a normed space.

- (i) The space $L_{\infty}(X)$ is $\mathrm{UR} \to z$, $z \in S_{L_{\infty}(X)}$, if and only if $\underset{t \in T}{\mathrm{ess \, inf}} \{ \delta_X(\to z(t), \epsilon \| z(t) \|_X) \} > 0 \quad \text{for } 0 < \epsilon \leq 2.$
- (ii) Let X be a UR normed space, then $L_{\infty}(X)$ is UR $\to z$ if and only if

$$\operatorname*{ess\,inf}_{t\in T}\{\|z(t)\|_X\}>0.$$

When (T, Σ, μ) is a discrete measure space, one has $L_{\infty}(X) = \ell_{\infty}(X)$ and ess inf = inf. Then, Theorems 1, 3 and Corollary 2 hold for $\ell_{\infty}(X)$. Moreover, formula (2) also holds at $\epsilon = 2$. The same results can be obtained for $\ell_{\infty}(X_i)$ ($\{X_i\}_{i\in I}$ is a family of normed spaces) i.e., the space of functions $x: I \to \bigcup_{i\in I} X_i$, such that $x_i \in X_i$, for each $i \in I$, and $(\|x_i\|_i) \in \ell_{\infty}$, which is a linear space endowed with the norm $\|x\| = \sup_{i\in I} \|x_i\|_i$.

REFERENCES

- [1] PHELPS, R.R., Uniqueness of Hahn-Banach extensions and unique best approximation, *Trans. Amer. Math. Soc.*, **95** (1960), 238-255.
- [2] ZAANEN, A.C., "Integration", North-Holland Publ. Com., Amsterdam, 1967.
- [3] ZIZLER, V., On some rotundity and smoothness properties in Banach spaces. Dissertationes Math., 87 (1971), 1-37.