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A fundamental result in Functional Analysis establishes that no matter
which norm is defined on a finite-dimensional space, the underlying topological
space is the same. A different question is the equality of the underlying metric
spaces. The basic examples of norms in K*, K = R or C, are the p-norms,
1 < p < o0, which generalize the euclidean modulus (p=2):

lell, = (Z nxm) " p<oo,

i=1

lz]|co = max |z;|, p= oo.

We denote by £; the space K* endowed with the || ||, norm. Here we present
several proofs that the spaces £) and £ are not isometric when p is differ-
ent from ¢. This result is certainly well-known to specialists and it appears
mentioned in several books on real analysis and/or functional analysis. Never-
theless, it is not easy to find an explicit proof. For instance, in [3], it appears
as an exercise to prove the cases p = 1,2,00; and in [13, p. 280, Prop. 37.6]
it is established that the Banach-Mazur distance between £ and £;. (the
only case that matters, as we shall see) is proportional to n!/P~'/2; the proof
there presented, using Khintchine’s and Kahane’s inequalities, has little over-
lap with ours. Besides this, Pelczynski [2] attributes to Gurarii, Kadec and
Macaev [5, 6] the exact calculus of the Banach-Mazur distance between £7
spaces:

If either 1 <p < g <2o0r2<p<gq< oo, then d(¢7,£r) = nt/P=1/4,

If1 <p<2<q< oo, then (V2 —1)d(£r,£) < max(n/P=1/2 nl/2=1/1) <
V2d(en, o).
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It is enough to consider the case of linear isometries since, by an old theo-
rem of Ulam and Mazur [10], an isometry of a real normed space that carries 0
to 0 must be linear (cf. [1, p. 166]). In fact, if f is an isometry between normed
spaces then for some linear isometry T one has that f(z) = T'(z)+ f(0) (see [4,
p. 107, Ex. 3(b)]).

The set {z € E : ||z|| = 1} will be termed the unit sphere of || ||. From now
on, the unit sphere of the scalar field shall be denoted D. An isometry between
the normed spaces (E, || ||;) and (F,|| ||2) is a linear application T': E — F
such that, for all z € E, ||Tz||, = ||z||;. It is clear that an isometry transforms
the unit sphere of one space into exactly the unit sphere of the other. Let S,
be the unit sphere of || ||,.

Our first proof is based on the idea: how many “peaks” has S,7

THEOREM. If p is different from q, the spaces £; and {} are not linearly
isometric except in the case: K=1R, p,q € {1,00}, and n = 2.

Let us start with:

An obvious case: K =R, p,q € {1,00}, and n = 2. The isometry is an
easy consequence of the equality 2 max{|a|, |b|} = |a + b| + |a — b].

An impossible case: p € {1,00} and ¢ ¢ {1,00} (or viceversa). In this
case, S, contains segments, which are preserved by linear applications, while
S, does not.

We now calculate the points where S, intersects the smallest sphere p.S;
that containis it.

An intermission: comparison with the || || norm. It is a direct consequence
of Holder’s inequality that || ||l2 < || |l, < nt/P712|| ||z, if 1 < p < 2, and that

g < e £ nl/27Y9)if 2 < g < co. Besides, one easily verifies:

(1<p<2) Thenorms || ||, and || ||5 coincide exactly on the points z = oe;,
o € D. Moreover, |z, = n*/?7*/2||z|, if and only if z = 3" o;e;,
o; € D.

(2 < ¢ < 00) The norms || ||, and || ||» coincide exactly on the points z = oe;,
o € D. Moreover ||z||, = n/?71/9||z||, if and only if z = 3 o;e;,
o; € D.

For the proof of the second parts of these assertions just verify that if o < 8
then the minimum of ||z||z over the unit sphere S, is attained if and only if
all coordinates are equal in modulus.
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THE PROOF
The first maybe not-entirely-trivial step is to show that
Claim 1. An isometry between £} and £} necessarily implies q = p*.

Proof. To see this, let 1 < p # g < co. Without loss of generality we can
assume that p < ¢. Let T: £; — £ be an isometry represented by a matrix
(a;;) with respect to the natural basis (e;) and (e;), 1 < 4,5 < n. It is clear
that the transposed application T*: £, — {5, with 1/r +1/r* =1, 7 = p,q,

must also be an isometry. Since 1 = ||g;||, = || Te;llq, and 1 = ||e;]lg+ = || Tes]] =,
one obtains the equalities
n n
1=Z|a,~j|q, (1<i<n) and1=2|aﬁp*, (1<j<n).
j=1 i=1

Summing all equations one obtains

n=>Y lagl'= > lay

%) )

p*

It is clear that |a;;| < 1. The case |a;;| € {0, 1} directly leads to an application
T having the form Tz = (r;z.(;), where |r;| = 1 and 7 is a permutation
of {1,...,n}, and this yields p = q. Otherwise, the last equation is only
consistent when g = p* (and, therefore, p < 2). |

To complete the proof, the idea is quite simple: why, in the real case, S;
and S, cannot be (except in the case n = 2) linearly isometric?: Because S;
has 2™ “peaks”, and a linear application must transform “peaks” into “peaks”.
Put it otherwise, let U,D be the disjoint union of n copies of D and let D"
be the product of n copies of D. The vertices of S; form the set U,D and the
vertices of S, form the set D™. In the real case, U,D has 2n elements and
D" has 2". In the complex case, U,D is a one-dimensional (real) manifold
with n connected components (n circumferences) and D" is a connected n-
dimensional manifold (an n-torus). Exception made of the obvious case n =1
(and, perhaps, n'= 2 real) they cannot be continuously transformed one into
the other.

Thus, what we want to make is to mimic this proof and make it work with
other p. To carry that program through we consider as “peaks” of the norm
Il I, the points where its unit sphere intersects the smallest ellipsoid pS, that
contains it. These points have been calculated in the preceding section. Now,
the core of our argumentation appears:
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Claim 2. Let 1 <p < 2. If T: {2 — {7, is an isometry, then n'/P=/2T': {2
— {2 is also an isometry.
Proof. Let T be such an isometry. If z;,...,z, are points in S, ¢ > 2,
then
min | Z tz;
(consequence of the parallelogram law plus Holder’s inequality) with strict

inequality except if z; = n=/?" 3., 0e; for all i (with a similar argument to
that of the second parts of the assertions in the intermission). Since

= oeill, =1y oiTeill,r

1
o <P

it follows that
Tei = n‘l/”* Zaijej,
which, taking into account the form of 7-' and that (e;,e;) = (T"'Te;, ;) =
(Tei, (T‘l)*ej) = 5,']', ylelds (Tei, TEj) = nl/p*‘l/zcsij.
Hence |Tzll; = | Z ziTeills = VX 2P Tel3 = n'/?7|zl. B

The immediate effect all this has is that:
T(S,US,) =TS, US, =n"""128,US8,..
And the lasting surprise: S, U S, = N,D, while n'/?~1/28, U S,. = D".

Epilogue. There is one case overlooked: K = R and n = 2; here, the only
possibility for an operator to be isometry is to be T'(z,y) = 277" (z+y,z—1).
That it is not can be seen as follows: let p < 2 < p* and put d = p*/p; this
makes p* = d+ 1 and p = (1 + d)/d. Consider points (1,r) with » > 1. The
equality ||(1,7)||, = [|T'(1,7)|/,» implies the equality

d
2 (1 + Td+1/d) — (,,. + 1)d+1 + (,,, _ 1)d+1.

If f(r) denotes the function on the left and g(r) denotes the function on
the right it is an elementary matter of calculus that lim,_,, ¢'(r)/f'(r) = 0.

A second proof after claim 1. Our second proof starts once it has been
shown that an isometry between £} and £} implies ¢ = p*. If T is an isometry
between £ and £7 then since ||Te;||, = 1 and [|T'(e; +¢;) |, = 2!/? it should be
possible to find three points a, b and c such that ||c — a||, = 2}/7, ||b—a|, =
1 =|lb—cl|q- Ther is no problem identifying a and c as («,0) and (0,0), where
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a denotes a number of modulus 2!/?. The third point b = (z,y) should satisfy
simultaneously the equations

e+ lylt = 1
o= aft + [yl = 1

which is impossible since z should have modulus 2!/¢ and this leaves no room
for y.

A second proof for claim 2. There is a unique ellipsoid of maximal volume
inscribed in the unit ball of a finite dimensional norm called John’s ellipsoid
(see [11, 12]). Therefore, an isometry must send John’s ellipsoid inscribed in
B, into John’s ellipsoid inscribed in B,. This, and the comparison with the
| [|2 norm, prove Claim 2.

Concluding remarks. i) During the preparation of the manuscript, the au-
thors learnt of a relevant result that was obtained by Lyubich and Vasertein [9]:
If one has an isometric embedding £; — £* with 1 < p,q < oo, then p = 2,
gis an even integer and m satisfies the inequality

n+gq/2—-1 <m< n+qg—1
n—1 -~ n—1

ii) A different line of proof has been suggested to us by Prof. R. Paya,
verifying that the modulus of convexity of || ||, and || ||, are different. If the
calculus of Banach-Mazur distances is “rather difficult” (cf. (2, p. 231]) the
exact calculus of the modulus of convexity of a given space is still harder. For
L, and ¢, spaces it was calculated by Hanner [7] and Kadec [8] (see [2, p. 238])
obtaining for 1 < p < co the formula §(t) = a,t* + o(t¥), where £ = max{2,p}
and a, are suitable positive constants depending only on p. The result of the
paper would also follow from this.

iii) In an infinite-dimensional Banach space, the numbers

b, = sup inf||>" + x|
loell=1 *

are used to define B-convexity (limn~'b, = 0). Here we used them to find the
“peaks” of the finite dimensional norms || - ||,.

REFERENCES

[1] BANACH, S., “Théorie des Opérations Lineaires”, Warszawa 1932, Second
printing, Chelsea Pub. Co., 1978.



3]

[4]
[5]

[10]
[11]

[12]
[13]

ISOMETRIES 151

BEessacA, C., PELCZYNSKI, A., Some aspects of the present theory of Ba-
gg;h spaces, in “S. Banach, Oeuvres”, Vol. I, PWN Warszawa 1979, 221 -
DII?S’;‘(?L, J., “Sequences and Series in Banach Spaces”, GTM 92, Springer,

DIEUDONNE, J., “Fundamentos del Anélisis Moderno”, Ed. Reverté, 1974.

GURARI, V.I., KADEC, M.I., MACAEV, V.I., On Banach Mazur distance
t;;gween certain Minkowski spaces, Bull. Acad. Polon. Sci., 13 (1965), 719-

GURARI, V.I., KADEC, M.I., MACAEV, V.I., Distances between finite di-
mensional analogs of the L,-spaces, Math. Sb., 70 (1966), 24-29 (Russian).

HANNER, O., On the uniform convexity of L, and £,, Ark. Math., 3 (1956),
239-244.

KADEC, M.I., Unconditional convergence of series in uniformly convex spaces,
Uspei Mat. Nauk., 1 (1956), 185—190 (Russian).

LvuBicH, Y.I., VASERSTEIN, L., Isometric embeddings between classical
Banach spaces, cubature formulas, and spherical designs, Geom. Dedicata,
47 (1993), 327 362.

MAZUR, S., ULAM, S., CRAS, 194 (1932), 946 —948.

MILMAN, V.D., SCHECHTMAN, G., “Asymptotic Theory of Finite Dimen-
sional Normed Spaces”, Lecture Notes in Math., 1200, Springer—Verlag, 1986.

PELCZYNSKI, A., “Geometry of Finite Dimensional Banach Spaces and Oper-
ator Ideals”, Notes in Banach spaces, Univ. Texas Press, 1980.

TOMCZACK-JAEGERMANN, N., “Banach-Mazur Distances and Finite Dimen-
sional Operator Ideals”, Pitman Monographs and Surveys in Pure and Ap-
plied Mathematics 38, Longman, 1989.



