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1. INTRODUCTION

In this paper we study how to fit the probability distribution of a nominal-
scaled response variable in function of the covariates with influence on the
response. The binary response case has been amply investigated and specially
fitted by logistic regression (Bonney [1], Davison [2], Lilienfield and Pyne [8],
Muenz and Rubinstein [12], ...). For this situation, different methods which en-
able us to evaluate and improve the fit have been developed (Fowlkes [3], Kay
and Little [5], Minkin [9], Pregibon [13], Hosmer and Lemeshow [4], ...). Suit-
able extensions for the multiple response case have been introducted (Lesaffre
and Albert [6], Liang [7], Santner and Duffy [14], ...), however diagnostic
methods for this situation have not been sufficiently investigated.

In recent paper, Molina and Gonzélez [10], under the assumption that the
response change is well described by a non-stationary r-th order Markov chain,
the transition probabilities were modeled through the Multiple-group Logis-
tic Regression Model (MLRM). The maximum likelihood estimation of the
regression parameters was considered and a method to evaluate whether the
logistic model is the correct one to fit was derived.

In this work, a test is proposed for the purpose of assessing the goodness of
fit of the MLRM to transition probabilities in the Markov model. The method
suggested is a generalization, to multiple response and adaptated for Markov
chains, of the one studied by Hosmer and Lemeshow [4].
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2. MATHEMATICAL MODEL

Suppose that a nominal-scaled variable with m possible responses (2 <
m < oo) and influenced by the covariates Zi,..., 2, is observed regularly
in time. We assume that the underlying process is an r-th order Markov
chain {X,, : n=0,1,...}, (r > 1), with state space S = {1,...,m} and non
stationary transition probabilities, where X, = i, if at time n the observed
response is the i-th. We consider the vector G, = (Giq,...,Gg,), where
Gin = Gin(Zi, ... s Zitn-1)) 18 a R-valued Borel-measurable function on R",
Z;; being the covariate Z; observed at time ¢. In this situation, we model the
transition probabilities, namely Pr[X, = i|(Xu-1,...,Xn-r) = $,Gr = gn},
n>r,1 €8, s €S8, which will be depoted by p,;(n), in the form:

m—1
n | = n =11\~ ! .
(2.1) poi(n) = exp{By; - 3,3 (L+ Y exp{B-G,}) , i=1,...,m~1
Jj=1

where g, = (1,g,) and for j = 1,...,m~1, B, = (B, - . - , By),) are parameter
vectors.

Thus, each row of the transition matrix is fitted by a different MLRM
which has a total number of (m — 1)(k 4 1) parameters to estimate.

Suppose that a sample of N individuals is observed until time T', (T' > r).
Forn=0,...,7 andt=0,...,7 — 1, let ¢ and 2}, be the observed values
of the variables X,, and Z;, at time n and at time ¢, respectively, for the
g-th individual (¢ = 1,...,N). From now on, G, and p,;(n), evaluated on
the observations of the g-th individual, will be denoted by g2 and pZ(n),
respectively. Then, from (2.1) it is easy to verify that the associated log-
likelihood, denoted by Lz, may be written in the form:

T N -1 m—1
22)Lr = Y > | > 65,85 g% — 6%, log (1+ Y exp{By - §%})
s€ST n=r¢g=1 L j=1 =1
being g2 = (1,¢2) and §%, = Z;":l Oain with 60, =1if (zf_,,...,2}_,) = s

and z = j, or 0 otherwise.

Really, the full log-likelihood includes a term for the probability of the first
r states, but since we want to estimate only the parameters of the transition
probabilities, for us this term is non informative.

From (2.2), and for s and n given, it is deduced that the maximum like-
lihood estimation of 8%, j = 1,...,m — 1, is obtained solving the likelihood

n‘
sj?
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equations:

N
[5§jn—5§npgj(n)]gzn=0, j=1,....m—1, u=0,...,k

q=1

with g¢, =1,¢=1,...,N.

These nonlinear equations must be solved in an iterative manner. The
Newton-Raphson procedure can be used, whenever the observed values of
the covariates are such that the second partial derivate matrix of the log-
likelihood is non-singular (see Molina and Gonzilez [10]). Let ng be the
maximum likelihood estimation of 8};. We will denote by p,;(n), the transition

probability py;(n) evaluated in A;’”j.

3. GOODNESS OF FiT TEST

For s and n given, we suppose that we wish to test the adequation of the
MLRM to the corresponding transition probabilities, i.e., the null hyphotesis
will be that p,;(n), 5 = 1,...,m — 1, are of the form specified in (2.1). For
this purpose, the following goodness of fit test, based in the former sample,
could be used.

Let I(s,n) = {q € {1,...,N} : (z%_4,...,z}_,) = s} and we denote by
N(s,n) the number of the indices falling in I(s,n), (we will assume that N
is large enough for that N(s,n) > 0, obviously Y .o N(s,n) = N). We
consider the m — 1 partitions of the interval [0,1]:

0=ci(s,n) <ci(s,n) <---<dc _,(s,n)<c)(s,n)=1, i=1,...,m—1

being g; a positive integer (2 < g; < 00) and we define the (m —1)-dimensional
random vector W in the form:
For the g-th individual, (¢ € {1,...,N(s,n)})

W = (h'la e 7h'm—1) ’ hi = ]-a s Gis if ﬁgz(n) € [cii_l(s,n),cii(s,n))
1=1,...,m—1.
For I = 1,...,m, hy = 1,...,g;, we denote by Oy, ,,...hn_))(5,7), the
“observed frequency” of the pair [X,, = {,W = (hy,...,hn_1)] in the sample

corresponding to N(s,n) individuals. Now, under the null hyphotesis, the
“expected frequency”, namely E ... h._))(5,n), will be:

(3.1) E(l,(hl,...,hm—l))(san) =
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chy (sim) et (sim)
=N(37n) / / Ql(san)f(yly-'wym—l)dyl ~-'dym—1
Chy—1(sm) cpt _i(sin)
where
psl(n) 1fl=1,,m—1
QJ(S, TL) = m—1 .
1- Y pyln)  ifl=m

being f the density (or probability) function of (ps(n),...,Psm-1)(n)) con-
sidered as function of the random vector (G, ..., Ggn)-

Taking into account the sample of N(s,n) individuals, a estimation of f,
will be:

~

(32) f(yl,'--vym—l) =

N(s’ n)—l if (yla s aym—l) € {(ﬁgl (n), v ,ﬁg(m—l)(n)) g4 = 17 cee ,N(s,n)}
0 otherwise

Consequently replacing (3.2) in (3.1), we have that:
B, (hseoohim-1)) (8,1) =

> #4(n) ifl=1,...,m—1
N(hl,n.,hm_1)(sa n) - Z ﬁg] (TL) ifl=m

where J(h1 ..... hm_l)(s,n) = {q € {la cee ,N(s,n)} : ﬁgl(n) € [cgu—l(san)v
ch(s,m)), 1 =1,...,m—1} and Np,,...,._,)(8,n) is the number of the indices
falling in Jip, ... h,._)(S,n). The goodness of fit test will be derived comparing
the observed frequencies with the expected frequencies through the statistic:

m m n 2
H(S n) . I .. g [O(l,(hl,...,hm_l))(s) n) - E([,(h],...,hm—l)) (S, n)]
P — E § § =< .
=1 hy=1  hp_1=1 B, (hy,eoo 1)) (85 70)

The asymptotic distribution (when N(s,n) — oo) of H(s,n) can not be
obtained from a direct application of the usual theory used for chi-squared
goodness of fit tests (mainly, because the observed frequencies are based on
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the estimations of the parameters Bgs3=1,....,m— 1). But, having use of
the theory for chi-squared test of Moore and Spruill [11], it is deduced that

(k+1)(m—1)
(3.3) H(s,n) = x},) + Z i+ X when N(s,n) = oo

i=1

where v =m [ gi—km+k—m, and p;, i =1,...,(k+1)(m — 1), are the
non-zero or 1 eigenvalues of the matrix:

where I(s,n) is the m [[2]" g; x m[[1%;" g; identity matrix,
U(s,n) = N(s,n) " (Ei(s,n) ... En(s,n)),

being El(s,n) = (E(l,(hl,_._,hm_l))(s,n), h'i = 1, e ,gi,’i = ]., ceey, M — 1), | =
1,...,m V(s,n) is the m [[";' g; x (k+1)(m —1) matrix which has as general
element

- —1/2 n
N(s,n)1/2 (E(l,(hl,...,hm_1))(3’n)) / (8E(l,(h1,...,hm—1))(8’n)/aﬂsju)
(l=1,....,m, h,=1,...,9;, j=1,....m—=1, u=0,...,k)

and J(s,n) is the (k+1)(m—1) x (k+1)(m—1) information matrix, (evaluated
at the true parameters values). In the practical applications, the component
(k+1)(m—1) pixfyy in (3.3) is well approximated through a chi-squared distri-

i=1
bution.
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