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1. INTRODUCTION

The Hahn-Banach and Krein—-Milman theorems permit us to obtain char-
acterization results of best approximations. Although numerous authors have
been used this approach (see e.g. [4, 6, 9]), probably the Singer’s book [11]
is the main effort directed to the application of functional methods to the
approximation theory.

In this paper, we derive a general characterization result of best simulta-
neous approximations from the Deutsch-Maserick theorem [4]. As an appli-
cation to the space of continuous functions endowed with the uniform norm,
we prove an alternation theorem which generalizes the ones stated by Rémes-
Golomb [10, 7] and Ling-McLaughlin-Smith [8].

Let E be a normed space. As usual, Bg (resp. Sg) denotes the closed unit
ball (resp. unit sphere) of E with center at the origin. If A C E, ext(A) is the
set of extremal points of A, and Re A denotes the real part of the scalar A.

If L is a subset of F and z € F, the set of best approximations to x from
L is

Pu(s) = {uo € L © |lz — uoll = int [}z — ul}.

To define a criterion for simultaneous approximation, endow E x E with a
norm. Then uy € L is a best simultaneous approximation to z,y € E from L
if (uo,uo) € Pyrxry(z,y), where d(L x L) = {(u,u) € Ex E : u € L} is the
diagonal set of L x L.

We will focus our attention on M-norms on E X F, i.e. those norms defined
as |[(z, )] = [(Jlz]l,lyll)], where |- | is a norm in R* such that |ry| < |sg,
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k = 1,2, implies |(r1,72)] < |(s1,82)]. The most typical example of M-norms
is the family of p-norms,

1@, o)l = (ll? + w7, 2> 1, (@, y)lleo = max(ll]], llyl)-

From now on, B’ will denote the unit ball of | - |, the dual norm of | -|. Finally
if (z,y) # (0,0), we set

Agy=A{(r,r2) €R* ¢ |(ri,m)|" =1, rillzll +rallyll = I (z, )1}

2. CHARACTERIZATION OF BEST SIMULTANEOUS APPROXIMATIONS

The general characterization theorem follows from [3, Theorem 1] and [4,
Theorem 2.5].

THEOREM 1. Let F x E be an M-normed space, L a convex set of E, and
z,y distinct points of . Then ug € L is a best simultaneous approximation
to z,y from L if and only if there exists (p,%) € E' x E' such that

(leell 1) € Ag—uig,y—uos
ez —uo) = llellllz —uoll, ¥y —uo) = [I¥lllly — uoll,
Re((¢ +¥)(u—wug)) <0, for every u € L.

In the following, E = Cla, b] will denote the space of real continuous func-
tions on the compact interval [a,b] of R endowed with the uniform norm. A

subset {uy,...,u,} of E is said to have the Haar property if, for every choice
of n different points t;,...,t, € [a,b], we have detu;(t;) # 0, 4,5 =1,...,n.
The n-dimensional linear subspace L, generated by the functions {u,,...,u,},

is called a Haar subspace.

Let E x E be endowed with an M-norm; z,y € L; L be an n-dimensional
Haar subspace of F; and uy € L. We will say that (ug,z,y) has a straddle
point if there exists a <t < b such that

[z = uoll = e(x —uo)(t), Iy —uoll = —€(y — uo)(t),
€
(2 = ti0,y — o) = = (w — y)(t), where € = +1.
(1, 1)]

This definition generalizes those given in [5] and [8] for the special cases in
which E x E is endowed with the maximum and the sum norm respectively.

Note that if (ug,z,y) has a straddle point, then ug is a best simultaneous
approximation to z,y from L.
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For z € E, we set T[z] = {t € [a,b] : ||z|| = |z(t)|}. One says that (u,z,y)

partially alternate n times on [a,b] if there are n+ 1 points a < ¢; < -+ <
tor1 < bsuch that t; € T[z; —u], and sgn(z;(¢;) — u(t;)) = €' sgn(ziyr (tir1) —
u(tiy1)), where e = %1, z;,2,0.; = zory, i = 1,...,n, and sgn denotes the

sign function [2].

The next theorem gives a necessary and sufficient condition for ordered best
simultaneous approximations when the criterium of approximating comes de-
fined by a M-norm with the commutative property, i.e. such that |(||v]|, ||w]|)]
= |(|lw]], |v]])], for every v,w € E. We will also suppose that |(1,0)] = 1.

In particular,when the norm in R? is the maximum norm, is obtained the
alternation theorem of Rémes-Golomb [10, 7]. On the other hand, when the

sum norm is considered, this characterization result has been obtained in [8,
Theorem 3.1].

THEOREM 2. (Chebyshev alternation theorem) Let E x E be endowed
with a commutative M-norm; L be an n-dimensional Haar subspace with
1 € L; z,y distinct points of E such that x <y and uy € L. Then ug is a best
simultaneous approximation to x,y from L if and only if at least one of the
following three conditions holds.

(i) (uo,z,y) has a straddle point.
(ii) There exists n+ 1 points a <t < -+ < t,.1 < b such that

|z — uol| = uo(t;) — z(t;), for each eveni € {1,...,n},
ly — woll = y(t;) — uo(t;), for each odd j € {1,...,n},

1 oy~ o) = 11, DIl = violl + s = woll).

(iii) Condition (ii) holds for each odd i and each even j.

Remark. (a) If the unit sphere of the norm | -| has not segments with slope
+1, the condition (ii) in the previous theorem becomes

(ii') There exists n + 1 points a < t; < - -+ < tne1 < b such that
I — ol = lly — woll = wo(t:) — (k) = y(t5) — voty),

for each even ¢ and for each odd j in {1,...,n}.
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Note that, in this case, Pyrxr)(z,y) coincides with the set of best simul-
taneous approximations to z,y from L, when E X F is endowed with the
maximum norm. Then the algorithm in [1] for constrution of elements of the
relative Chebyshev center may be used.

(b) When the unit sphere of the norm | -| has some segment with slope +1,
a necessary condition in order that (uo,uo) € Pyrxr)(z,y) is

1 .
2 = uoll + lly — woll = S|(1,1)] inf [[(z — u,y — u)]|.
2 u€L

So a slight modification of the previous algorithm enables us to find best
simultaneous approximations.

[
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