On the Chebyshev Alternation Theorem †

Manuel Fernández and María L. Soriano

Dpto. de Matemáticas, Univ. de Extremadura, 06071-Badajoz, Spain

(Presented by C. Benítez)

AMS Subject Class. (1991): 41A65, 46B20

Received June 9, 1995

1. Introduction

The Hahn–Banach and Krein–Milman theorems permit us to obtain characterization results of best approximations. Although numerous authors have been used this approach (see e.g. [4, 6, 9]), probably the Singer's book [11] is the main effort directed to the application of functional methods to the approximation theory.

In this paper, we derive a general characterization result of best simultaneous approximations from the Deutsch-Maserick theorem [4]. As an application to the space of continuous functions endowed with the uniform norm, we prove an alternation theorem which generalizes the ones stated by Rémes-Golomb [10, 7] and Ling-McLaughlin-Smith [8].

Let E be a normed space. As usual, B_E (resp. S_E) denotes the closed unit ball (resp. unit sphere) of E with center at the origin. If $A \subset E$, ext(A) is the set of extremal points of A, and $\text{Re }\lambda$ denotes the real part of the scalar λ .

If L is a subset of E and $x \in E$, the set of best approximations to x from L is

$$P_L(x) := \{u_0 \in L : ||x - u_0|| = \inf_{u \in L} ||x - u||\}.$$

To define a criterion for simultaneous approximation, endow $E \times E$ with a norm. Then $u_0 \in L$ is a best simultaneous approximation to $x, y \in E$ from L if $(u_0, u_0) \in P_{d(L \times L)}(x, y)$, where $d(L \times L) = \{(u, u) \in E \times E : u \in L\}$ is the diagonal set of $L \times L$.

We will focus our attention on M-norms on $E \times E$, i.e. those norms defined as ||(x,y)|| = |(||x||, ||y||)|, where $|\cdot|$ is a norm in \mathbb{R}^2 such that $|r_k| \leq |s_k|$,

[†]A full version will appear in Atti Sem. Mat. Fis. Univ. Modena

k = 1, 2, implies $|(r_1, r_2)| \le |(s_1, s_2)|$. The most typical example of M-norms is the family of p-norms,

$$\|(x,y)\|_p = (\|x\|^p + \|y\|^p)^{1/p}, \ p \ge 1, \quad \|(x,y)\|_\infty = \max(\|x\|,\|y\|).$$

From now on, B' will denote the unit ball of $|\cdot|'$, the dual norm of $|\cdot|$. Finally if $(x, y) \neq (0, 0)$, we set

$$\Delta_{x,y} = \{(r_1, r_2) \in \mathbb{R}^2 : |(r_1, r_2)|' = 1, r_1 ||x|| + r_2 ||y|| = ||(x, y)||\}.$$

2. Characterization of Best Simultaneous Approximations

The general characterization theorem follows from [3, Theorem 1] and [4, Theorem 2.5].

THEOREM 1. Let $E \times E$ be an M-normed space, L a convex set of E, and x, y distinct points of E. Then $u_0 \in L$ is a best simultaneous approximation to x, y from L if and only if there exists $(\varphi, \psi) \in E' \times E'$ such that

$$(\|\varphi\|, \|\psi\|) \in \Delta_{x-u_0, y-u_0},$$

$$\varphi(x-u_0) = \|\varphi\| \|x-u_0\|, \quad \psi(y-u_0) = \|\psi\| \|y-u_0\|,$$

$$\operatorname{Re}((\varphi+\psi)(u-u_0)) \le 0, \quad \text{for every } u \in L.$$

In the following, E = C[a, b] will denote the space of real continuous functions on the compact interval [a, b] of \mathbb{R} endowed with the uniform norm. A subset $\{u_1, \ldots, u_n\}$ of E is said to have the *Haar property* if, for every choice of n different points $t_1, \ldots, t_n \in [a, b]$, we have $\det u_j(t_i) \neq 0, i, j = 1, \ldots, n$. The n-dimensional linear subspace L, generated by the functions $\{u_1, \ldots, u_n\}$, is called a Haar subspace.

Let $E \times E$ be endowed with an M-norm; $x, y \in L$; L be an n-dimensional Haar subspace of E; and $u_0 \in L$. We will say that (u_0, x, y) has a straddle point if there exists $a \leq t \leq b$ such that

$$||x - u_0|| = \epsilon(x - u_0)(t), \quad ||y - u_0|| = -\epsilon(y - u_0)(t),$$

 $||(x - u_0, y - u_0)|| = \frac{\epsilon}{|(1, 1)|'}(x - y)(t), \quad \text{where } \epsilon = \pm 1.$

This definition generalizes those given in [5] and [8] for the special cases in which $E \times E$ is endowed with the maximum and the sum norm respectively.

Note that if (u_0, x, y) has a straddle point, then u_0 is a best simultaneous approximation to x, y from L.

For $x \in E$, we set $T[x] = \{t \in [a, b] : ||x|| = |x(t)|\}$. One says that (u, x, y) partially alternate n times on [a, b] if there are n + 1 points $a \le t_1 < \cdots < t_{n+1} \le b$ such that $t_i \in T[z_i - u]$, and $\operatorname{sgn}(z_i(t_i) - u(t_i)) = e^{i+1} \operatorname{sgn}(z_{i+1}(t_{i+1}) - u(t_{i+1}))$, where $e = \pm 1$, $z_i, z_{i+1} = x$ or $y, i = 1, \ldots, n$, and sgn denotes the sign function [2].

The next theorem gives a necessary and sufficient condition for ordered best simultaneous approximations when the criterium of approximating comes defined by a M-norm with the commutative property, i.e. such that |(||v||, ||w||)| = |(||w||, ||v||)|, for every $v, w \in E$. We will also suppose that |(1, 0)| = 1.

In particular, when the norm in \mathbb{R}^2 is the maximum norm, is obtained the alternation theorem of Rémes–Golomb [10, 7]. On the other hand, when the sum norm is considered, this characterization result has been obtained in [8, Theorem 3.1].

THEOREM 2. (Chebyshev alternation theorem) Let $E \times E$ be endowed with a commutative M-norm; L be an n-dimensional Haar subspace with $1 \in L$; x, y distinct points of E such that $x \leq y$ and $u_0 \in L$. Then u_0 is a best simultaneous approximation to x, y from L if and only if at least one of the following three conditions holds.

- (i) (u_0, x, y) has a straddle point.
- (ii) There exists n+1 points $a < t_1 < \cdots < t_{n+1} < b$ such that

$$||x - u_0|| = u_0(t_i) - x(t_i)$$
, for each even $i \in \{1, ..., n\}$, $||y - u_0|| = y(t_j) - u_0(t_j)$, for each odd $j \in \{1, ..., n\}$, $||(x - u_0, y - u_0)|| = \frac{1}{2} |(1, 1)| (||x - u_0|| + ||y - u_0||)$.

(iii) Condition (ii) holds for each odd i and each even j.

Remark. (a) If the unit sphere of the norm $|\cdot|$ has not segments with slope ± 1 , the condition (ii) in the previous theorem becomes

(ii') There exists n+1 points $a \le t_1 < \cdots < t_{n+1} \le b$ such that

$$||x - u_0|| = ||y - u_0|| = u_0(t_i) - x(t_i) = y(t_i) - u_0(t_i),$$

for each even i and for each odd j in $\{1, \ldots, n\}$.

Note that, in this case, $P_{d(L\times L)}(x,y)$ coincides with the set of best simultaneous approximations to x,y from L, when $E\times E$ is endowed with the maximum norm. Then the algorithm in [1] for constrution of elements of the relative Chebyshev center may be used.

(b) When the unit sphere of the norm $|\cdot|$ has some segment with slope ± 1 , a necessary condition in order that $(u_0, u_0) \in P_{d(L \times L)}(x, y)$ is

$$||x - u_0|| + ||y - u_0|| = \frac{1}{2} |(1, 1)| \inf_{u \in L} ||(x - u, y - u)||.$$

So a slight modification of the previous algorithm enables us to find best simultaneous approximations.

REFERENCES

- [1] AMIR, D., ZIEGLER, Z., Construction of elements of relative Chebyshev center, in "Approx Theory and Appl.", Proc. Workshop Technion, Haifa 1980, Academic Press, 1–11.
- [2] Bacopoulos, A., On approximation by sums of Chebyshev norms, Num. Math., 16 (1970), 243-247.
- [3] BAUER, F.L., STOER, J., WITZGALL, C., Absolute and monotonic norms, Num. Math., 3 (1961), 257-264.
- [4] DEUTSCH, F., MASERICK, P.H., Applications of the Hahn-Banach theorem in approximation theory, Siam Review, 9 (3) (1967), 516-530.
- [5] DUNHAM, C.B., Simultaneous Chebyshev approximation of functions on an interval, *Proc. Amer. Math. Soc.*, **18** (1967), 472–477.
- [6] GARKAVI, A.L., Duality theorems for approximation by elements of convex sets, *Uspehi Mat. Nauk*, **16** (1961), 141–145.
- [7] GOLOMB, M., On the uniformly best approximation of functions given by incomplete data, M.R.C. Technical Summary Report 121, Univ. Wisconsin, Madison, 1959.
- [8] LING, W.L., MCLAUGHLIN, H.W., SMITH, M.L., Approximation of radom functions, J. Approx. Theory, 21 (1977), 10-22.
- [9] Phelps, R.R., Uniqueness of Hahn–Banach extensions and unique best approximation, *Trans. Amer. Math. Soc.*, **95** (1960), 238–255
- [10] RÉMES, E., Sur la détermination de polynomes d'approximation de degré donné, Comm. Soc. Math. Kharkof, Ser. 4 (10) (1934), 41–63.
- [11] SINGER, I., "Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces", Springer-Verlag, New York, 1970.