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1. INTRODUCTION

There are two natural generalizations of symplectic manifolds. The first
one is obtained by considering the Poisson bracket defined from the symplectic
form and gives rise to the notion of Poisson manifold [11, 17]. The second
one is obtained by weakening the maximality of the rank and gives rise to
the notion of presymplectic manifold [11]. Presymplectic manifolds appear
in order to globalize the constrained Dirac-Bergmann formalism for singular
Lagrangian systems (3, 5, 6, 7, 2, 1]. In fact, if L : TQ) — R is a singular
Lagrangian, then M; = Leg(T'Q) C T*Q is a submanifold of a symplectic
manifold 7@, where Leg : TQ) — T*( is the Legendre transformation.
Thus, M, is a presymplectic manifold. If L admits a global dynamics there
is no secondary constraints and the analysis of the dynamical equations is
made on M, the submanifold defined by the primary constraints. If there is
secondary constraints, Gotay and Nester [5, 6, 7] have developed a constraint
algorithm which globalizes the Dirac-Bergmann one and we obtain a final
constraint submanifold with a global dynamics. In both cases, we get the
same geometrical picture: a presymplectic manifold.
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For quantization it is necessary to have a Poisson bracket on the carrier
space of a given dynamical system. However, it is not possible to define
in a natural way a Poisson bracket in an arbitrary presymplectic manifold
(M,w). In [4] Dubrovin et al have used a so-called generalized connection in
the presymplectic manifold in order to define a Poisson bracket by projection.
Such a generalized connection is in fact an almost product structure adapted
to the presymplectic form w, i.e., one of the complementary distributions is
the characteristic distribution and, the other one is the "regular part” where
the dynamics take place. This trick was used by de Leén and Rodrigues in
order to obtain the dynamics for a singular Lagrangian system [8, 9, 10] and
independently by Pitanga and Mundin [16, 15] (see also [12, 1]).

The purpose of this Note is to apply the method of almost product struc-
tures to perform a Poisson reduction of a presymplectic system. To do this, we
assume that there exists an integrable almost structure which is adapted to w
and invariant by the Lie group of symmetries G which acts presymplectically
on M. If all the vector fields &y, belong to the regular distribution and u is
a regular value of a momentum map J : M — g*, then the reduced space
YA )

I Gu
almost product structure which defines exactly the reduced Poisson bracket
obtained from the induced Poisson bracket on M. In order to introduce the
dynamics in this picture, we suppose first that the G-invariant Hamiltonian
function H admits a global dynamics, or, in other words, there are no sec-
ondary constraints. Thus, the reduced dynamics are obtained. If there are
secondary constraints, then we develop a constraint algorithm and obtain a
final presymplectic manifold with a global dynamics.

is endowed with a reduced presymplectic form and a reduced

2. ALMOST PRODUCT STRUCTURES ADAPTED TO PRESYMPLECTIC
STRUCTURES

Let (M,w) be a presymplectic manifold of constant rank r, namely w is a
closed 2-form satisfying w” # 0 and w"™! = 0. Hence M has dimension 27 + s,
where s > 0. If s = 0, we are in presence of a symplectic manifold.

We say that an almost product structure F' is adapted to the presymplectic
form w if

kerw = ker A,

where A = $(Id + F) and B = {(Id — F) are the canonical projectors of F
and, A = ImA and B = I'mB are the complementary distributions defined by
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F. We also denote by (A, B) the almost product structure F. Notice that B
is always integrable, since w is closed. We denote by A* and B* the transpose
operators and, by A* and B* their images. In such a case, the restriction of b
to the distribution A induces an isomorphism of C'*°-modules:

b: A— A*.

Then, given a one-form a on M, there exists a unique vector field X, 4 € A
such that

(1) ix, w=A".

For a function f on M we put X; 4 = X4 4. Next, we can define a bracket of
functions as follows:

{fi9}a = —w(Xsa,Xg4);

{, } 4 satisfies all the properties of a Poisson bracket except the Jacobi identity.
In fact, we have:

LEMMA 2.1.
’IJX”‘g}A’Aw(Z) = ”:[Xf,Ang,A]w(Z) =+ B*df[Xq,A,AZ] — B*dg[Xf’A,AZ] 5
VZ € X(M),¥f,g € C®(M).

PROPOSITION 2.2. The bracket { , } 4 defined by the almost product struc-
ture F' satisfies the Jacobi identity if and only if F' is integrable.

Proof. If {, } 4 satisfies the Jacobi identity then X1, 4 = [Xj 4, X, 4],
for any two functions f and g on M. Since the vector fields X; 4 span A, then
A is integrable. Therefore, the almost product structure F' is integrable (see
9).

Conversely, if F is integrable then, from Lemma 2.1 we deduce that
X0y 0 AW(Z) = ix, 4x, 1w (Z). Therefore, the vector fields Xy ,y, 4 and
[Xt.4), X(g,4)] differ by an element of kerw. But, since the almost product
structure I is integrable, we deduce that [X; 4, X, 4] € A. Thus, X(53,,4 =
(X714, Xg4] 1

As a consequence, if we assume that F is integrable, we have a Poisson
manifold (M, {, }4) whose symplectic foliation is just ,A. Furthermore, the
symplectic form on each leaf £ is just the restriction of the presymplectic
form to L. If we denote by fj4 : T*"M — T M the linear mapping defined by
(ha(df),dg) = {f,g}a, then X; 4 = fa(df). Thus, Xy af = {H, f}a, for any
function f, where H : M — R is a Hamiltonian function.
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Remark 2.3. In [4] an almost product structure was called a generalized
connection. The reason for this name is the following. Suppose that ker w is
fibrating, i.e., there is well-defined the quotient manifold M = M/kerw and
we have a fibered manifold 7 : M — M. Hence A defines a connection in 7
in the sense of Ehresmann.

3. POISSON REDUCTION

DEFINITION 3.1. Let (M, {,}) be a Poisson manifold. We say that ® :
G x M — M is a Poisson action if ® preserves the Poisson bracket {, }, i.e.,

{f,h}o®, ={fo®,,hod,} Vf,he C®(M),Vgeq.

If the action of G is free and proper, then the quotient manifold M/G is
a differentiable manifold and 7 : M — M/G is a principal G-bundle, where
7 denotes the canonical projection. As we know, M /G is a Poisson manifold
with Poisson bracket defined as follows:

{ﬁ‘:ﬁ}M/G :{F’H})

for all F,H € C*®(M/G) where we denote by F' and H any functions on M
projectable onto F and H, respectively [14].

A mapping J : M — g* such that any vector field &, is a Hamiltonian
vector field for :fz“ , will be called a momentum map for the Poisson action,
where g denotes the Lie algebra of G, &,y denotes the vector field on M induced
by £ € g and, T’g‘ is the function defined by ﬁ(’r) = (J(x),£). We say that a
momentum map is G-equivariant if it verifies that

J(®,(z)) = Ad,-J(z) Vg € G,Vz € M .

It is easy to prove that a momentum map for a Poisson action is G-equivariant
iff J: M — g* is a Poisson map, where we consider in g* the Lie-Poisson
bracket. Also, the G-equivariance for a momentum map of a Poisson action is
equivalent to the following condition:

']/[f’\’/]:{']/\f)j’\/} , V& veg.

Suppose now that ;1 € g* is a regular value for J. In that case, J~'(u) is a
closed regular submanifold of M which is invariant by the isotropy group G,,.
If the action of G, is free and proper then J~!(u) is a principal G,-bundle over
the quotient manifold M, = J~'(1)/G,. We denote by n, : J~'(n) — M,
the canonical projection.

Now, we apply Theorem 6.48 of reference [14].
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THEOREM 3.2. Let M be a Poisson map and let ® : G x M — M be
a Poisson action admitting a G-equivariant momentum map J : M — g*.
Let p € g* be a regular value of J. If G, acts freely and properly on the
submanifold J~'(u) then the reduced space M, = J~'(u)/G, has a unique
structure of Poisson manifold with Poisson bracket {", }, and there exists an
inmersion ¢ : M,, — % such that ¢(M,,) is a Poisson submanifold of M/G.
Moreover, the following diagram conmutes:

[

J7H (k) M

7T“ m

M, ¢ M/G

where i, is the embedding of J~'(u) onto M.

Remark 3.3. If G is connected, then the action of G preserves not only
the symplectic foliation, but each of its leaves. Thus, if £ is a symplectic leaf,
the restriction of J to £ is a momentum map for the restricted action of G.
If 1 is still a regular value for the restricted momentum map, we can perform
a symplectic reduction of £ with momentum p. If some conditions of clean
intersection are verified, we can relate these symplectic reductions with the
Poisson reduction. The Poisson reduction collects, in some sense, all these
symplectic reductions (see Vaisman [17] for details).

4. PRESYMPLECTIC REDUCTION

Let (M,w) be a presymplectic manifold and let G be a Lie group acting
presymplectically on M, i.e, Pjw = w, Vg € G, where & : G x M — M is the
action of G.

A mapping J : M — g* such that any vector field &, is a Hamiltonian
vector field for 72‘ = (J, &), ie.,

iﬁmw = d(.]f) )
will be called a momentum map for the presymplectic action (see [2]).

PROPOSITION 4.1. (1) Let ® : G x M — M be a presymplectic action
such that it preserves the almost product structure (A, B), that is, (T'®,)A =
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A(T®,), Vg € G. In that case, ® is a Poisson action for the Poisson bracket
{ > } A-

(2) If J : M — g* is a momentum map for the presymplectic action ®
such that

1. ® preserves the almost product structure (A, B),

2. fME.A, V¢ € g,
then J is a momentum map for the Poisson action ® : G x M — M where,
here, we consider M as a Poisson manifold with Poisson bracket {, } 1.

THEOREM 4.2. Let (M,w) be a presymplectic manifold endowed with an
integrable almost product structure (A, B) adapted to w and let G be a Lie
group acting presymplectically on M. Let J : M — g* be an equivariant mo-
mentum mapping for this action. We also suppose that (A, B) is G-invariant
and &y € A, VE € g. Assume that u € g* is a regular value of J and that
the isotropy group G, acts freely and properly on J~'(u). Then, the quo-
tient manifold M,, has a unique presymplectic form w,, such that 7w, = ijw,
and a unique almost product structure (A,, B,,) adapted to w, such that the
induced Poisson bracket { , }4, coincides with the Poisson bracket { , },
obtained from Theorem 3.2.

Proof. In fact, A and B are tangent to J'(u) and G -invariant. Hence
they project onto an almost product structure (A,,B,) on M,. Since the
Nijenhuis tensors of A and B project onto the Nijenhuis tensors of A4, and
B, respectively, we deduce that (A,, B,) is also integrable. Further, the form
i*w is G -invariant and then it projects onto a 2-form w,. That (4,, B,) is
adapted to w, follows from a direct computation. Finally, one can directly
check that {, },, coincides with ({, }4),.. 1

5. REDUCTION OF THE DYNAMICS

Let (M,w) be a presymplectic manifold and H : M — R a function. In
that case, we say that (M,w, H) is a presymplectic system with Hamiltonian
function H. We seek for a solution of the equation:

(2) ixw=dH .

Since w is not symplectic, (2) has no solution in general, and even, if it exists,
it will be not unique.

In [6], Gotay and Nester have developed a constraint algorithm for presym-
plectic systems. Consider the points of M where (2) has a solution and suppose
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that this set M, is a submanifold of M. Nevertheless, the solutions of (2) on
M, are not necessarily tangent to M. Hence, we consider the points of M5 on
which there exists a solution which is tangent to M,. Thus, we obtain a new
submanifold M; and the proccess may be continued. We obtain the following
sequence of submanifolds:

o= My == My - M, =M.
Alternatively, these submanifolds can be described as follows:
M;={z €M |VYveT,M", 6 v(H)=0},

where
TI?ML'J;] = {'U €T, M ‘ Vu € T, M;_y w(m‘)(u,'u) = O} :

We call M, the secondary constraint submanifold, M; the tertiary constraint
submanifold, and, in general, M; is the i-ary constraint submanifold.

If the algorithm stabilizes, that is, there exists a positive integer & € N
such that M, = M, and dim M), # 0, then we have a final submanifold M,
where, by construction, a solution X on M; exists, i.e., X € X(M;) verifies
that

We assume that (M,w, H) has no secondary constraints. This fact is equiv-
alent to that
dH (z)(kerw)(z) =0, Vz € M .

In other words, the presymplectic system admits a global dynamics. In that
case, if (A, B) is an adapted almost product structure, we have A*(dH) = dH,
and then there exists a unique vector field X on M such that X € A and
ixw = dH.

Next, let G be a Lie group acting presymplectically on M in such a way
that the hypotheses of Theorem 4.2. Assume that H is G-invariant. Under
these conditions we deduce that X is G-invariant. Since H is G-invariant,
then H o1, is G ,-invariant and it projects onto a function H, on M,. The
vector field X is tangent to J~'() and hence it projects onto a vector field
X, on M,. A direct computation shows that

X, Wy = d'H/m ’
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Hence, the reduced presymplectic system (M, w,, H,) has no secondary con-
straints and its dynamics is given by the integral curves of X, ie., X, f =
[H,, [}, V] € C=(M,).

If (M,w, H) has secondary constraints, and there exists a final constraint
submanifold M;, we can develop the above procedure for the presymplectic
system (M;,wy, Hy), where wy = wyy, and Hy = Hjy, are the restrictions.
Notice that the algorithm preserves the action of G and we obtain a presym-
plectic action of G on M.

6. RECONSTRUCTION OF THE DYNAMICS

In order to reconstruct the dynamics from the reduced ones we may use a
connection v in the principal G ,-bundle 7, : J ™' (u) — M, [13]. Let ¢, (1)
be an integral curve of X, passing trough a point 2y = ¢,(0) and take its
horizontal lift d(t) passing trough zy, say zo = d(0), m,(20) = zo. Therefore,
we have

V(X (d(8)) — d' (1)) = (X (d(t)) = £()

where £(t) is a curve into g,, the Lie algebra of G,. Next, we put c(t) =
g(t)d(t), g(t) being a curve in G, to be determined in order that ¢(t) would
be an integral curve of X. From the G ,-invariance of X we deduce that

X(d(t)) = d'(t) = [Ty Lony-1 (9" (8)]s-100 (d(2))

which implies that
&(t) = Ty Lyy-1 (9' (1))

or, equivalently,

(4) g'(t) = TeLy (£(1))

with g(0) = e. Now, we only have to solve (4), which is usually made by
quadratures.
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