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In this paper we continue the study of infinitesimal symmetries for higher order
Lagrangian systems which we have iniciated in [3, 4]. A classification for first-order
non-autonomous Lagrangian systems appears first time in Prince [6, 7] (see also
Sarlet and Cantrijn [8] for higher order Cartan and Noether symmetries; Sarlet
[9] for the relationship between equivalent Lagrangians and equivalence classes of
dynamical symmetries; and Carifiena and Martinez [1] for a Noether theorem). In
what concern to higher order Lagrangian systems, some results were obtained by
Crampin, Sarlet and Cantrijn [2] (see also Sarlet [10, 11]).

Let @ be an n-dimensional manifold. The evolution space associated to @ is the
manifold J*(R, Q) of all k-jets, j¥o, of mappings 0 : R — Q. We may canonically
identify the manifolds J¥(R, Q) and R x T*Q, where T*Q is the tangent bundle of
order k. We call g% : J*(R,Q) — Q and 7* : J*¥(R,Q) — R the canonical
projections defined, respectively, by f%(j¥0) = o(t) and 7*(j¥ o) = t. JH¥(R,Q) is,
also, a fibred bundle over J'(R,Q), 0 < r < k, bemg BE IR, Q) — J(R,Q)
the projection defined by B*(jfo) = jro. Let (t,q v, qf), 1 < A< n, bethe
induced comdinates on J*(R, Q) from local coordinates (¢*),1 < A < n,on Q, i.c.,
¢(jro) = g(g*oo()), 1 <i< k.

A C*®-function L : J¥(R,Q) — R is said to be a non-autonomous (or time-
dependent) Lagrangian of order k. We say that L is regular if the Hessian matrix
(3_11%2;7?) is of maximal rank. We denote by Ep the energy associated to L and
by O and Q = —dOy, the Poincaré-Cartan 1-form and 2-form, respectively. The
intrinsic espressions of I);, and Oy, are:
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where dr is the total derivative respect to the time and J, = J, - C,®dt, being
Jr = (J1)" and C, = J,_;C;. Here J; denotes the canonical aimost tangent structure
of order k and C; the higher order Liouville vector field on T*Q.

The global equations of the motion may be written as follows

(1) ixQL =0, ixdt=1.

Since (2, dt) defines a cosymplectic structure on J?*~1(R, Q), there exists a unique
vector field £;, (the Reeb vector field) on J2*~1(R, Q) satisfying (1). The vector field
&1, will be called the Euler-Lagrange vector field. We have (see [5]):

1. €L is a non-autonomous differential equation of order 2k,

2. The solutions of £;, are just the solutions of the generalized Euler-Lagrange-
equations:
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In order to integratc the motion equations, it is useful to find functions which
are constant along the motion. A differentiable function f : J#*~}(R,Q) — R is
called a constant of the motion of £, if 1, f = 0.

We obtain a classification of infinitesimal symmetries in two classes, point sym-
metries (vector fields on R x @) and not necessarily point-like symmetries (vector
fields on J*~(R, Q)).

If X is a vector field on R x Q we denote by X" the complete lift of X to
J™(R,Q) (see [12]). We obtain the following classification of point-symmetries:

Let X be a vector field on R x @. Then:

1. X is said to be a Lie symmetry if
[€r, X2 = dr(r)e
where 7 = di(X).
2. X is said to be a Noether symmetry if
Lyeiiae-n®©p = df ,
for some function [ on J¥* (R, Q).
3. X is said to be an infinitesimal symmetry of L if
X®R(L) = —dp(1)L
where 7 = di(X).

We also obtain the following classification of not necessarily point symmetries:
Let X be a vector ficld on J2*~1(R, Q). Then:
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1. X is said to be a dynamical symmetry of &, if
(€0, X] = éu(r)er,
where 7 = di(X).
2. X is called a Cartan symmetry if
LzOL=df,
for some function f on J#* (R, Q).

We have obtained the following results which relate the different types of in-
finitesimal symmetries:

1. A Noether symmetry is a Lie symmetry.

2. An infinitesimal symmetry of L is a Noether symmetry.

bl

A Cartan symmetry is a dynamical symmetry.
4. If X is a Noether symmetry then X(¥=1.25-1) is a4 Cartan symmetry.
5. If X is a Lie symmetry then X(2*-1.2%=1) {5 3 dynamical symmetry.

The relationship between symmetries and constants of the motion is given in
the following results:

1. (Noether theorem) If X is a Cartan symmetry of £, then F = f — Qp(X)
is a constant of the motion of £1. Conversely, if I is a constant of the motion
of &1, then there exists a vector field Z on J#*~1(R, Q) such that

1zQ = dF .

Hence, Z is a Cartan symmetry and every vector field Z + ¢g£; with g¢:
J*1(R,Q) — R is also a Cartan symmetry.

o

. F is a constant of the motion of ¢, if and only if there exists a unique vector

field X on J?*~1(R, Q) such that dt(X) = 0 and L3O, = d(O(X) — F).

(2k-1,2k-1)) is a constant of

3. If X is an infinitesimal symmetry of L, then Op(X
the motion of £.
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