EXTRACTA MATHEMATICAE Vol. 9, Niim. 2, 95-100 (1994)

A Lower Estimate of the Interface
of some Nonlinear Diffusion Problems *

J. GONCERZEWICZ AND W. OKRASINSKI

Institute of Mathematics, Universily of Wroclaw, Pl. Grunwaldzki 2/4, 50-384 Wroclaw, Poland

AMS Subject Class. (1991): 35R35, 35K65, 35Q35, T6R50. Received June 10, 1994

1. INTRODUCTION

This paper presents some results concerning the behaviour of the interface of
the following problem:

(1.1)  wy=(u")zz + (C/(z + a))(u™), for (z,t) € S = (0,00) x (0,00) ,
(1.2)  u(z,0) = ug(x) for z € (0,00) ,
(1.3)  u(0,t) = uy(2) for ¢ € (0,00) ,

where m > 1, C > 0 and @« > 0. We shall denote the above problem by
P(m,Cjup,ur). Throughout this paper we make the following assumptions:

up € L*(0,00), ess infug > 0, ug =0 a.e. on (a,00) (a >0),

uy € L*(0,00), ess infuy; > > 0.

(1.4)

Without loss of generality we can assume that a =1 and § = 1.

In the case C' = 0, equation (1.1) becomes the one-dimensional porous medium
equation [2], [3], [10]. H C = N—1 (N =2,3,...) then (1.1) is the radial version of
the N-dimensional porous medium equation u, = A(u™), transformed by introdu-
cing the translated spatial variable [7]. Especially, the problem P(2,1;0,1) describes
the radially symmetrical infiltration into an unsaturated soil when the level of water
in a cylindrical resorvoir is constant [9]. The question of interest is the range of
infiltrating water.

Under assumptions (1.4), the problem P(m, C;ug, u;) has a unique weak solution
u = u(z,t) [6], [7], [8]. The function u is nonnegative, bounded and continuous on
S, and u satisfies an appropriate integral identity instead of (1.1). However, u is
the classical solution for those points (x,t) € S where w(z,t) > 0. Moreover, if we
define ((t) = sup{z € (0,00) : u(x,t) > 0} ({ > 0) then 0 < ((¢) < oo for t > 0,
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and ((t) is a Lipschitz continuous nondecreasing function. The curve = = ((t) is
called the interface or the free boundary of P(m,C;uq,u;).
We known that in the case of P(m,0;0,1) the interface has the form

(L.5) () = co(m)e,

where the constant ¢o(m) > 0 depends on m [1], [5], [11], [12], [16],[18], [19]. If
C € [0,1] then the interface of P(m,C;uo,u;) satisfies the following asymptotic
result [17]:

(1.6) log((t)'v%logt as 1 o0

In this paper we construct a so-called weak subsolution of P(m,C};ug,u;) for
C > 1 and use this subsolution to prove tthe following theorem:

THEOREM. Let C > 1. If { is the interface of the problem P(m,C;uo,1;) then

C
]1/‘ o1, 10,

(L) )2 [(C=1)(C+Dm(m+1)7"t +1

In the authors’ opinion, the estimate (1.7) seems to be useful for futher consi-
derations concerning the large-time behaviour of (.

2. SOME INFORMATION ABOUT WEAK SUBSOLUTIONS
We recall some results presented in [7]. We put
L) = (™) + (Cl{zx + 1)) (™) — uy -
The following facts concerning weak subsolutions shall be needed:

LEMMA 2.1. Let
P={(e,8) : 2 = 2()
(1) w is nonnegative bounded and continuous on S = (0, 00) X (0,00),
(ii) ue, @™ )se € C(S\T), @™)s € €(95),
(iil) u(x, 0+) exists for a.e. x € [0,00) andu(0+,1) exists for a.e. t € [0,00),

(iv) £@) > 0in S\T,

v € €([0,00)) N F((0,00)), 7(t) = 0 for t > 0 and let
4>0). If

thenu is a weak subsolution of P(m, Ciup,w1) withug =u(-,0+) andy; = (0+,-).

LEMMA 2.2. Let u be the weak solution of P(m,C;up,u;) and letu be a weak
subsolution of P(m,Ciug,u1). If wo < uo a.e. and w3 < u; a.e., then v < w
a.e. on S.

In the next two sections we shall construct a weak subsolution of P(m,C;0,1)
for C > 1.
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3. AN AUXILLIARY DIFFERENTIAL EQUATION
Let m > 1 and C > 1. We consider the ordinary differential equation
(31) U™+ (G == 5f, s €011,
with conditions
(3.2) f@)=0, lim(f"(s)’ =0

We shall look for nonnegative nontrivial solutions f € ‘to”((O 1) N € %((0,1)) of
(8.1)-(3.2). Using the substitution

(3.3) f(s) = g(s'C = 1), se(0,1],

the above problem is transformed into

(3.4) (g™)" = (1/12(C = 1)])(z + D)EV/=Og' | 2 € [0,00),
(3.5) 9(0) =0, lim (g"(z))’ = 0.

The following lemma is the key point in our considerations:

LEMMA 3.1. The problem (3.4)-(3.5) has the unique solution g € €([0,00)) N
% %((0,00)) such that g(z) > 0 for > 0. Moreover g is strictly increasing and

(3.6) g(z) < [((m - 1)/(2m(C — 1))a ]1/(m 1)

Sketch of proof. We follow the ideas of [13] and [14]. Using the substitution
(see [18])

z2>0.

b

v(z) = g"(z),

the problem (3.4)-(3.5) can be reduced to the nonlinear integral Volterra equation

(3.7) v(z) = /0 k(z, s)[v(s)]/™ds, =z € [0,00),
where
(3.8) k(z,s) = (1 /12(C — 1)]) ((3 + 1)(CH1/0-C)

+[(C+D/(C = D)](z = s)(s +1)26109), 0<s<w.

In view of the results of [4] and [14], there exists a unique nontrivial solution of
(3.7), i.e., a continuous function v such that v(z) > 0 for & > 0 (v = 0 is the
trivial solution of (3.7)). This implies that the first part of the lemma is true.
Differentiating (3.7) we obtain

(3.9)  v'(e) = k(z, @)[u(e)]/™ + /0 "oz, $)[(s)] ™ ds,  w € (0,00).
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Since kz(z,s) > 0 for z > 0 and 0 < s < z, then v'(z) > 0 for > 0. Hence, v (and,
consequently, g) is strictly increasing. Moreover, from (3.9), we get the following
inequality

v'(2) < (1/12(C = D) (@)™, z € (0,00).

Integration gives
(m/(m = 1)) "™ < (1/[2(C - D)z, @€ (0,00).

Since this last inequality is equivalent to (3.6), the lemma is proved. N

An inmediate consequence of Lemma 3.1 is the following.

COROLLARY 3.1. The problem (3.1)-(3.2) has a unique solution f € €((0,1])N
% %((0,1)) such that f(s) > 0 for s € (0,1). Morcover f is strictly decreasing and

1/(m-1)

(3.10)  f(s) < [((m = 1)/[2m(C = 1)))(s*~¢ — 1) s€(0,1].

4. CONSTRUCTION OF A SUBSOLUTION
We start with the following problem:

(4.1) A=1/[fa/A)m,

where f is the function whose existence is asserted in Corollary 3.1.
The following lemma holds.

LEMMA 4.1. The problem (4.1)~(4.2) has a unique solution A € €([0,00)) N
% %((0,00)), which is a strictly increasing function.

Since the proof of Lemma 4.1 is very similar to the proof of Lemma 5.1 in [13]
we omit its details.

Since f is decreasing and A is increasing, then, by (4.1), A is concave and,
consequently,

(4.3) A(t) <0, 1>0.

Now, we define a function u by

[A@PDf((x + 1D)/AW?) , for & < [AW)/2 -1,

(4.4) u(e,t) = { , fora> [A(t)]l/2 =1

LEMMA 4.2. IfC > 1 then the functionu defined by (4.4) is a weak subsolutiom
of P(m,C;0,1).
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Proof. Let v(t) = [A()]"/? — 1. By Corollary 3.1 and (4.4) it is easy to see that
u satisfies assumptions (i)-(iii) of the Lemma 2.1 with u(z,0+) = 0 for = € (0, c0)
and u(0+,t) =1 for ¢t € (0,00). If t > 0 and z € (0,7(t)), then we have

L)(z,t) = (=1/(m — 1)) A(t) [AQ]*™D f((@ + 1) /[A@)]?) -

By (4.3) and (4.4) we infer .£() > 0 in S\I. Thus, the assumption (iv) of
Lemma 2.1 is fulfiled. K

5. PROOF OF THEOREM

We compare the weak solution u of P(m,C;ug,u;) with the weak subsolution
u defined in the previous section. Sinceup < ug a.e. in (0,00) and u; < uy a.e. in
(0, 00) then, according to Lemma 2.2,u < u on S. Hence

(5.1) () > AWM =1, t>0.
It follows from (3.10) and (4.1)-(4.2) that
(5.2) A(t) 2 w((2C = Dm/(m —1))t), >0,

where w = w(9V) is defined by

w(9)
9 _—:/ (£C-D2 _1)de, 9>0.
1

It is easy to see that

(5.3) w(d) > [(C+1)/29 +1]7 ) w0

Combining (5.1), (5.2) and (5.3) we obtain (1.7). 1
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