A Solution to the $\bar{\partial}$ -Problem for Holomorphic (0,q)-Forms, $q \geqslant 1$, on a Complex Normed Space

ROBERTO LUIZ SORAGGI¹

Dpto de Matem. Pura, Universidade Federal do Rio de Janeiro, C.P. 68530, CEP 21944, Rio de Janeiro, Brazil

AMS Subject Class. (1980): 32F50, 46G05, 46G20

Received October 22, 1993

1. Introduction

Using entirely elementary methods from differential calculus, we construct a \mathscr{C}^{\bullet} -solution to the equation $\overline{\partial}u=\omega$ where ω is a holomorphic (0,q) form on a normed space or a Fréchet-Montel space or a DFM space. This extends in certain directions results in [4], [6] and [7]. This is in sharp constrast with the situation for the Cauchy-Riemann equation for $\mathscr{C}^{\bullet}(0,q)$ forms ω where satisfactory solutions are only known for q=1 on DFN spaces. Counterexamples in [1], [3] and [5] show that restrictions on the spaces, the coefficients and the degree are necessary. For q>1, solutions are given for coefficients with polynomial growth in ℓ_2 [4] and this is the only known result for arbitrary q. Solutions for q=1 on separable Hilbert spaces and DFN spaces are given in [6]. The case q=2 is solved with holomorphic coefficients in [7] and in [9] solutions are given for (0,1) holomorphic forms on a Fréchet nuclear space.

2. The Construction of a Solution of $\bar{\partial}u=\omega$ for Holomorphic (0,q) Forms, $q\geqslant 1$, on a Normed Space

Let E and F be complex normed spaces. Let \mathbb{K} be the field of real or complex numbers. For a positive integer $q \geqslant 1$, $\mathscr{L}_{\mathbb{K}}({}^qE;F)$ is the normed vector space of continuous $q-\mathbb{K}$ -linear mappings from E into F. Let $\mathscr{L}_{\mathbb{K}}({}^oE;F)=F$. The conjugate space of E will be denoted by \overline{E} . Let $\mathscr{L}_{\mathbb{C}}({}^qE;F)$ be the normed vector space of continuous q-anti-linear mappings from E into F. The notations $\mathscr{L}_{\mathbb{C}}({}^qE;F)=\mathscr{L}_{\mathbb{C}}({}^q\overline{E};F)=\mathscr{L}({}^q\overline{E};F)$ will be used.

¹ Supported, in part by CNPq (Grant n. 405527/90-0), Universidade Federal do Ceará and Universidade Federal do Rio de Janeiro, Brazil.

We denote by $\mathscr{L}_{\mathbb{K}}({}^qE)$ the Banach space of continuous $q-\mathbb{K}$ -linear forms on E. The Banach space of continuous q-anti-linear forms on E will be denoted by $\mathscr{L}_{\mathbb{C}}({}^qE)$. For $q\geqslant 1$, let $\Lambda^{(0,q)}(E)$ be the Banach space of continuous alternating forms on E. For q=0 let $\Lambda^{(0,q)}(E)=\mathscr{L}_{\mathbb{C}}({}^qE)=\mathbb{C}$.

If $\omega:\Omega\longrightarrow \Lambda^{(0,q)}(E)$ is a $\mathscr{C}^1(0,q)$ form on an open subset Ω of E let $\omega':\Omega\longrightarrow\mathscr{L}_{\mathbf{R}}(E,\Lambda^{(0,q)}(E))$ be its derivative. Let $[\overline{\partial}]\omega(z)\in\mathscr{L}(\overline{E},\Lambda^{(0,q)}(E))$ be the anti-linear component of $\omega'(z)$ and let $\overline{\partial}\omega(z)$ be the alternating component of $[\overline{\partial}]\omega(z)$. We use without explicit mention the isometry between $\mathscr{L}(E,\mathscr{L}(^qE;F),\mathscr{L}(^{q+1}E;F))$ and $\mathscr{L}(^2E,\mathscr{L}(^{q-1}E;F)),\ q\geqslant 1$. For each fixed $z\in E$ and q>1 define $\tau_q(z):E^{q-1}\longrightarrow E^q$ by $\tau_q(z)(h_1,...,h_{q-1})=(h_1,...,h_{q-1},z)$. For q=1, $\tau_1(z)=z$. For further details we refer to [7].

We now state some remarks which we use in the proof of our main result. The proofs are straightforward.

Remark 2.1. Let $T \in \Lambda^{(0,q)}(E) \longrightarrow \mathscr{L}(q\overline{E}), q \geqslant 2$. For each fixed $z \in E$, the function $T_1:(\overline{E})^{q-1} \longrightarrow \mathbb{C}$ defined by $T_1(z_1,\ldots,z_{q-1})=T_1(z,z_1,\ldots,z_{q-1})$ is a continuous alternating (q-1) anti-linear form on E. We write $T_1=T(z)$. In particular, for a (0,q) form ω on E, we have that $u:E \longrightarrow \Lambda^{(0,q-1)}(E)$ defined by $u(z)=\omega(z)(z)$ is a (0,q-1) form on E.

Remark 2.2. Let $\omega:\Omega\longrightarrow\mathscr{L}_{\mathbb{R}}(^qE;F),\ q\geqslant 1$, be a \mathscr{C}^1 mapping. For z in Ω and h in E, $\lim_{t\to 0}(\omega(z+th)-\omega(z))/t=\omega'(z)h\in\mathscr{L}_{\mathbb{R}}(^qE;F)$. Continuity of ω at z implies that $\omega(z+th)$ tends to $\omega(z)$ in $\mathscr{L}_{\mathbb{R}}(^qE;F)$ as $t\to 0$. For each fixed $z\in E$ the mapping $T\in\mathscr{L}_{\mathbb{R}}(^qE;F)\longrightarrow T\circ\tau_q(z)\in\mathscr{L}(^{q-1}E;F)$ is continuous. Hence it follows easily that $A:\Omega\longrightarrow\mathscr{L}_{\mathbb{R}}(^{q-1}E;F)$ defined by

$$A(z)(h_1,\ldots,h_{q-1}) = \omega(z) \circ \tau_q(z)(h_1,\ldots,h_{q-1},z) = \omega(z)(h_1,\ldots,h_{q-1},z)$$

is \mathscr{C}^1 and

(1)
$$A'(z) = \omega'(z) \circ \tau_{q+1}(z) + \omega(z) \circ \tau_q$$

Remark 2.3. Let $\omega:\Omega\longrightarrow\mathscr{L}_{\mathbb{R}}({}^qE;F),\ q\geqslant 3$, be a \mathscr{C}^1 mapping. For all $k=0,1,\ldots,q-2$, the mapping $B_k:\Omega\longrightarrow\mathscr{L}_{\mathbb{R}}({}^qE;F)$ defined by

$$B_k(z)(h_1, \dots, h_q) = \omega(z)(h_1, \dots, h_k) \circ \tau_{q-k}(h_{k+1})(h_{k+2}, \dots, h_q)$$

= $\omega(z)(h_1, \dots, h_k, h_{k+2}, \dots, h_q, h_{k+1})$

is \mathcal{C}^1 and

(2)
$$B_{k'}(z)(h)(h_{1},\ldots,h_{q}) = [\omega'(z).h](h_{1},\ldots,h_{k},h_{k+2},\ldots,h_{q},h_{k+1})$$
$$= \omega'(z)(h,h_{1},\ldots,h_{k}) \circ \tau_{g-k}(h_{k+1})(h_{k+2},\ldots,h_{q}).$$

Now, we have the following crucial lemma.

LEMMA 2.4. Let $\omega:\Omega\longrightarrow\mathscr{L}_{\mathbf{R}}(^2E;F)$ be a \mathscr{E}^{ϖ} mapping. Define $A:\Omega\longrightarrow\mathscr{L}_{\mathbf{R}}(E;F)$ by $A(z)=\omega(z)\circ\tau_2(z)$. Then A is a \mathscr{E}^{ϖ} mapping and for $n\geqslant 1$

(3)
$$A^{(n)}(z) = \omega^{(n)}(z) \circ \tau_{n+2}(z) + \sum_{k=0}^{n-1} B_k(z).$$

Where $B_k(z)(h_1,\ldots,h_{n+1}) = \omega^{(n-1)}(z)(h_1,\ldots,h_k) \circ \tau_{n+1-k}(h_{k+1})(h_{k+2},\ldots,h_{n+1})$.

Proof. We prove this result by induction. Let n=1. $A': \Omega \longrightarrow \mathscr{L}_{\mathbf{R}}(E,\mathscr{L}_{\mathbf{R}}(E;F)) \cong \mathscr{L}_{\mathbf{R}}(^{2}E;F)$. By applying (1) (in remark 2.2) we have

$$A^{(n)}(z) = \omega'(z) \circ \tau_{2+1}(z) + \omega(z) \circ \tau_{2} = \omega'(z) \circ \tau_{1+2}(z) + \omega(z) \circ \tau_{1+1}$$
$$= \omega^{(n)}(z) \circ \tau_{n+2}(z) + \omega^{(1-1)}(z) \circ \tau_{n+1}$$
$$= \omega^{(n)}(z) \circ \tau_{n+2}(z) + B_{0}(z).$$

Suppose (3) is true for $n \ge 1$.

We consider $B:\Omega\longrightarrow \mathscr{L}_{\mathbf{R}}(^{n+1}E;F)$ defined by $B(z)=\omega^{(n)}(z)\circ\tau_{n+2}(z)$. Since $\omega^{(n)}:E\longrightarrow \mathscr{L}(^{n+2}E;F)$ is \mathscr{C}^1 , B is \mathscr{C}^1 and

(4)
$$B'(z) = \omega^{(n+1)}(z) \circ \tau_{n+2+1}(z) + \omega^{(n)}(z) \circ \tau_{n+2}.$$

On the other hand the mapping $B_k: \Omega \longrightarrow \mathscr{L}_{\mathbb{R}}(^{n-1}E;F)$ for $k=0,1,\ldots,n-1$ is \mathscr{E}^1 and $B_k': \Omega \longrightarrow \mathscr{L}_{\mathbb{R}}(^{n+2}E;F)$ is given by

$$B_{k}'(z)(h)(h_{1},\ldots,h_{n+1})$$

$$= \omega^{(n)}(z)(h)(h_{1},\ldots,h_{k}) \circ \tau_{n+1-k}(h_{k+1})(h_{k+2},\ldots,h_{n+1})$$

$$= \omega^{(n)}(z)(h)(h_{1},\ldots,h_{k},h_{k+2},\ldots,h_{n+1},h_{k+1}).$$
(5)

Hence A is a \mathcal{C}^{n+1} mapping and

(6)
$$A^{(n+1)}(z) = \omega^{(n+1)}(z) \circ \tau_{n+3}(z) + \omega^{(n)}(z) \circ \tau_{n+2}(z) + \sum_{k=0}^{n-1} B_{k'}(z).$$

Let
$$C_k: \Omega \longrightarrow \mathscr{L}_{\mathbb{R}}(^{n+2}E; F)$$
, $k = 1, ..., n$, be defined by
$$C_k(z)(h_1, ..., h_{n+2}) = \omega^{(n)}(z)(h_1, ..., h_k) \circ \tau_{n+2-k}(h_{k+1})(h_{k+2}, ..., h_{n+2}).$$

Define $C_0(z) = \omega^{(n)}(z) \circ \tau_{n+2}$. For k = 1, ..., n, we have the following equalities

$$\omega^{(n)}(z)(h_1, \dots, h_k) \circ \tau_{n+2-k}(h_{k+1})(h_{k+2}, \dots, h_{n+2})$$

$$= [\omega^{(n)}(z)(h_1)][(h_2, \dots, h_k) \circ \tau_{n+2-k}(h_{k+1})(h_{k+2}, \dots, h_{n+2})]$$

$$= \omega^{(n)}(z)(h_1)[(v_1, \dots, v_{k-1}) \circ \tau_{n+1-(k-1)}(v_k)(v_{k+1}, \dots, v_{n+1})]$$

(where $v_{i-1} = h_i$ for all j, $2 \le j \le n+2$).

These equalities together with (5) imply that

$$C_k(z) = B'_{k-1}(z).$$

The last equality together with (6) imply that

$$A^{(n+1)}(z) = \omega^{(n+1)}(z) \circ \tau_{(n+1)+2}(z) + \sum_{k=0}^{n} C_k(z).$$

This proves (3) for n+1 and by induction this complete the proof.

Now, we are in a position to prove our main result.

THEOREM 2.5. Let E be a complex normed space and let Ω be an open subset of E. Let $\omega:\Omega\longrightarrow \Lambda^{(0,q)}(E)$ be a holomorphic (0,q) form on Ω , $q\geqslant 1$. If $u:\Omega\longrightarrow \Lambda^{(0,q-1)}(E)$ is defined by $u(z)=\omega(z)(z)$, then u is a \mathscr{C}^{ϖ} (0,q-1) form and $\overline{\partial} u=\omega$ on Ω .

Proof. By the inclusion $\Lambda^{(0,q)}(E) \hookrightarrow \mathscr{L}({}^q\overline{E})$, we may suppose that $\omega:\Omega\longrightarrow\mathscr{L}({}^q\overline{E})$ is a \mathscr{C}^{ϖ} mapping. In fact $\omega:\Omega\longrightarrow\mathscr{L}_{\mathbb{R}}({}^qE;\mathscr{L}({}^{q-1}\overline{E}))$ and $u:\Omega\longrightarrow\mathscr{L}({}^{q-1}\overline{E})$. By (1), u is \mathscr{C}^1 and

(7)
$$u'(z) = \omega'(z) \circ \tau_2(z) + \omega(z).$$

Now, ω' can be seen as the following \mathscr{C}^{∞} mapping

$$\omega': \Omega \longrightarrow \mathscr{L}_{\mathbb{R}}(E, \mathscr{L}_{\mathbb{R}}(E, \mathscr{L}_{\mathbb{R}}(q^{-1}E))) \cong \mathscr{L}_{\mathbb{R}}({}^{2}E, \mathscr{L}_{\mathbb{R}}(q^{-1}E)).$$

Consider the mapping

$$A: \Omega \longrightarrow \mathscr{L}_{\mathbb{R}}(E, \mathscr{L}_{\mathbb{R}}(q^{-1}E)) \cong \mathscr{L}_{\mathbb{R}}(qE)$$

defined by $A(z) = \omega'(z) \circ \tau_2(z) = \omega'(z)(.,z) = \omega'(z)(.)(z)$.

By applying lemma 2.4, A is a \mathscr{C}^{ϖ} mapping. Hence, (7) shows that u is \mathscr{C}^{ϖ} on Ω . From (7) it follows easily that

(8)
$$[\bar{\partial}]u(z)(y) = [\bar{\partial}]\omega(z)(y,z) + \omega(z)(y)$$
 for $z \in \Omega$ and $y \in E$.

Since ω is holomorphic, $\omega'(z) \in \mathscr{L}_{\mathbb{C}}(E, \mathscr{L}({}^q\overline{E}))$ and hence $[\overline{\partial}]\omega(z)(y,z) = 0$ for all $y \in E$. Hence, (8) can be written as

$$[\overline{\partial}]u(z) = \omega(z).$$

Since $\omega(z)$ is an alternating q-anti-linear form, we have $\bar{\partial}u=\omega$. This complete the proof of theorem 2.5.

We now solve the $\overline{\partial}$ -problem for holomorphic (0,q) forms, $q \ge 1$, on Fréchet-Montel and DFM spaces.

THEOREM 2.6. Let E be a complex DFM or a complex Fréchet-Montel space and let $\omega: E \longrightarrow \Lambda^{(0,q)}(E)$, $q \ge 1$, be a holomorphic (0,q) form on E. If $u: E \longrightarrow \Lambda^{(0,q-1)}(E)$ is defined by $u(z) = \omega(z)(z)$, then u is a \mathscr{C}^{ϖ} (0,q-1) form on E and $\overline{\partial} u = \omega$ on E.

Proof. a) Let E be a DFM space. By a result of Colombeau and Mujica [2] on factorization of holomorphic mappings from a DFM space into a metrizable locally convex space, we have for holomorphic $\omega: E \longrightarrow \Lambda^{(0,q)}(E)$, $q \geqslant 1$, that there exists a convex, balanced, open subset U of E such that ω factors as in diagram

$$E \xrightarrow{\omega} \Lambda^{(0,q)}(E)$$

$$\pi_{U} \downarrow \qquad \qquad \downarrow^{q} \pi_{U}$$

$$E_{U} \xrightarrow{\tilde{\omega}} \Lambda^{(0,q)}(E_{U})$$

where E_U is the normed space associated with U, π_U is the canonical map, $q\pi_U(\tilde{A})(y_1,\ldots,y_q)=\tilde{A}(\tilde{y_1},\ldots,\tilde{y_q})$, $\pi_U(y_j)=\tilde{y_j}$ and $\tilde{\omega}$ is a holomorphic mapping of bounded type, i.e., bounded on the balls of E_U .

Theorem 2.5 implies that $\tilde{u}: E \longrightarrow \Lambda^{(0,q-1)}(E_U)$ defined by $\tilde{u}(\tilde{z}) = \tilde{\omega}(\tilde{z})(\tilde{z})$ is \mathscr{C}^{∞} . In fact, \tilde{u} is a (0,q-1) form of bounded type and $\bar{\partial}\tilde{u} = \tilde{\omega}$ on E_U . Hence a \mathscr{C}^{∞} (0,q-1) form $u: E \longrightarrow \Lambda^{(0,q-1)}(E)$ can be defined such that u is of uniform bounded type, i.e., the following diagram commutes

$$E \xrightarrow{u} \Lambda^{(0,q-1)}(E)$$

$$\pi_{U} \downarrow \qquad \qquad \downarrow^{q-1} \pi_{U}$$

$$E_{U} \xrightarrow{\tilde{u}} \Lambda^{(0,q-1)}(E_{U})$$

and $\overline{\partial}u = \omega$ on E. We refer to [7] (Section 5) for further details. It is easy to see that $u(z) = \omega(z)(z)$.

b) Now, we prove theorem 2.6 for a Fréchet-Montel space E. Following arguments given in [9] (lemma 3.3) we can show that a holomorphic (0,q) form ω on E can be locally factorized through some E_U , i.e., for every $x \in E$ there exists a convex, balanced, open subset U of E such that ω factors as in the diagram

$$x + U \subset E \xrightarrow{\omega} \Lambda^{(0,q)}(E)$$

$$\pi_{U} \downarrow \qquad \qquad \downarrow^{q} \pi_{U}$$

$$\tilde{x} + \tilde{U} \subset E_{U} \xrightarrow{\tilde{\omega}_{x}} \Lambda^{(0,q)}(E_{U})$$

where $\tilde{\omega}_x$ is a holomorphic (0,q)-form on $\tilde{x} + \tilde{U}$.

By theorem 2.5, $\tilde{u}_x: \tilde{x} + \tilde{U} \subset E_U \longrightarrow \Lambda^{(0,q-1)}(E_U)$ defined by $\tilde{u}_x(\tilde{z}) = \tilde{\omega}_x(\tilde{z})(\tilde{z})$ is \mathscr{C}^{ϖ} and $\bar{\partial}\tilde{u}_x = \tilde{\omega}_x$ in $\tilde{x} + \tilde{U}$.

Now $u: E \longrightarrow \Lambda^{(0,q-1)}(E)$ defined by $u(z) = \omega(z)(z)$ factors as in the following diagram

In particular, u is \mathscr{C}^{∞} , u factorizes locally through some E_U and $\bar{\partial}u = \omega$ on E. Theorem 2.6 extends to holomorphic (0,q) forms, results given in [7], for holomorphic (0,2) forms on DFN spaces, and results in [9], for holomorphic (0,1) forms on Fréchet nuclear spaces.

REFERENCES

- COEURÉ, G., L'équation du = F en dimension infinie. Journées Bruxelles Lille Mons d'Analyse Fonctionelle et Équations aux Derivées Partielles. Université Lille, Publications Internes, Vol. 131, (1978), 6-9.
- COLOMBEAU, J.F., MUJICA, J., Holomorphic and differentiable mappings of uniform bounded type, in "Functional Analysis, Holomorphy and Approximation Theory" (J.A. Barroso, Ed.), North-Holland Math, Studies, Vol. 71, 179-200, North-Holland, Amsterdam, 1982.
- DINEEN, S., Cousin's first problem on certain locally convex topological vector spaces, An. Acad. Brasil. Cienc. 48(1) (1976), 229-236.
- HENRICH, C.J., The θ-equation with polynomial growth on a Hilbert space, Duke Math. J. 40(2) (1973), 279-306.
- 5. MEISE, R., VOGT, D., Counterexamples in holomorphic functions on nuclear Fréchet spaces, Math. Z. 182 (1983), 167-177.

- 6. RABOIN, P., Le problème du $\bar{\delta}$ sur un espace de Hilbert, Bull. Soc. Math. France 107 (1979), 225-240.
- SORAGGI, R.L., The δ-problem for (0,2) form in a DFN space, J. Funct. Analysis 98(2) (1991), 380-403.
 SORAGGI, R.L., The symmetric anti-linear component of the derivative of the
- 8. SORAGGI, R.L., The symmetric anti-linear component of the derivative of the canonical solution of the δ operator, *Proc. Royal Irish Academy* Vol. 93A (1) (1993), 111-122.
- 9. SORAGGI, R.L., A global solution to the ∂-problem for holomorphic (0,1) forms on a Fréchet nuclear space, manuscript.