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1. INTRODUCTION

Using entirely elementary methods from differential calculus, we construct a
#®—solution to the equation Ou = w-where w is a holomorphic (0,¢) form on a -
normed space or a Fréchet—Montel space or a DFM space. This extends in certain
directions results in [4], [6] and [7]. This is in sharp constrast with the situation
for the Cauchy—Riemann equation for #®(0,q) forms w where satisfactory
solutions are only known for ¢ =1 on DFN spaces. Counterexamples in [1], [3]
and [5] show that restrictions on the spaces, the coefficients and the degree are
necessary. For ¢ > 1, solutions are given for coefficients with polynomial growth
in £, [4] and this is the only known result for arbitrary g¢. Solutions for ¢ =1 on
separable Hilbert spaces and DFN spaces are given in [6]. The case ¢=2 is
solved with holomorphic coefficients in [7] and in [9] solutions are given for (0,1)
holomorphic forms on a Fréchet nuclear space.

2. THE CONSTRUCTION OF A SOLUTION OF fu = w FOR HOLOMORPHIC
(0,g) FORMS, ¢ >1, ON A NORMED SPACE

Let E and F be complex normed spaces. Let K be the field of real or
complex numbers. For a positive integer ¢ > 1, Zk(9E;F) is the normed vector
space of continuous ¢—K-—linear mappings from E into F. Let k(°E;F)=F.
The conjugate space of E will be denoted by E. Let .£¢(9E;F) be the normed
vector space of continuous ¢—anti—linear mappings from FE into F. The
notations Zg(1E;F) = Lc(¢E;F) = Z(1E;F) will be used.
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Universidade Federal do Rio de Janeiro, Brazil.



THE J-PROBLEM IN COMPLEX NORMED SPACES 65

We denote by £k(?F) the Banach space of continuous ¢—K—linear forms
on E. The Banach space of continuous ¢— anti—linear forms on £ will be denoted
by £¢(E). For g>1, let A%4)(E) be the Banach space of continuous
alternating forms on E. For ¢ =0 let A(09)(E)= £¢(9E)=C.

If w:Q— A09)E) is a €1(0,q) form on an open subset Q of E let
w : Q— Lr(E,A09(E)) be its derivative. Let [0|w(z) € Z(E,A0)(E)) be
the anti—linear component of w’(z) and let dw(z) be the alternating component
of [flw(z). We use without explicit mention the isometry between
L E, £L9E;F), L9 E;F)) and Y(%E, Z£(971E;F)), ¢>1. For each fixed
z€E and ¢>1 define 7,(z):E91— E7 by 7(2)(hy,.hg1) =
(hy,.-shg-1,2). For ¢ =1, 7(2) = z. For further details we refer to [7].

We now state some remarks which we use in the proof of our main result.
The proofs are straightforward.

Remark 2.1. Let T € A09)(F) = #(9E), ¢>2. For each fixed z¢€ E,
the function T) :(E)?! — C defined by Ty(z,..-,25-1) = T1(2,21,..,2-1) is a
continuous alternating (¢g—1) anti—linear form on E. We write T} = T(2). In
particular, for a (0,¢) form w on E, we have that v: E — A(0¢-1)(E) defined
by u(z) = w(z)(z) isa (0,¢—1) form on E.

Remark 2.2. Let w:Q— ZR(9E;F), ¢>1,bea #! mapping. For z in
Q and A in E, limy ,o(w(z+th)—w(z))/t = w'(2)h € ZLR(IE; F). Continuity of
w at z implies that w(z+th)tends to w(2) in ZR(9E;F) as t— 0. For each
fixed z€ E the mapping T € ZR(9E;F)— To7,(2) € L9 1E;F) is conti-
nuous. Hence it follows easily that 4 : Q — Zg(9-1E; F) defined by
A(z)(hlv“')h’q—l) = UJ(Z)OTq(Z)(hl ) 7h'q—1 7Z) = w(z)(h'l ) '-wh'q-l 12)
is #! and
(1) A/(Z)z w/(z)07q+1(z)+ w(z)qu
Remark 2.3. Let w:Q— ZR(9E;F), ¢>3, be a €1 mapping. For all
k=0,1,..,¢-2, the mapping By:Q — ZR(YE;F) defined by
Bk(z)(hl IRERR) hq) = w(z)(h’l ) 1hk)°Tq—k(hk+l)(hk+2)-~- )hq)
= (U(Z)(hl Y h]cyh'k+2: ahq:hk+1)

is €! and



66 ROBERTO LUIZ SORAGGI

Bkl(z)(h)(hl ,...,hq) = [(JJI(Z).h](hl,...,hk,hk+2,“.,hq,hk+1)
2 /
@) — ()b s, i) 07k () Bz ).
Now, we have the following crucial lemma.

LEMMA 24. Let w:Q— ZLR(2E;F) be a €® mapping. Define
A:Q— ZLR(E;F) by A(z) = w(2)oTy(2). Then A is a ¥ mapping and for
n>1 R

(3) AT(z) = wr(z)0Ty,9(2) + :i:Bk(z)-
Where Bi(2)(hy, ..., hnyy) = 0™ D(2)(hy, o k) 0 Tooyck (hat )Pk, -3 st -
Proof We prove this result by induction. Let n=1. A":Q-—
ZLr(E, LR(E; F))= Zgr(2E;F). By applying (1) (in remark 2.2) we have
AM)(z2) = w'(2)oT,(2) + w(z)omy = w(2)oT1,2(2) + w(z)o Ty,
= w(z) oy 9(2) + w(2) 0T
= w™(z)o1y,9(2) + Bo(2).

Suppose (3) is true for n > 1.
We consider B :Q— Zg(*™'E;F) defined by B(z) = w™)(z)o71,,9(2).
Since w(»): E—— #("*2E;F)is ¥!, Bis #! and

(4) B/(z) = w(’“l)(z)ormzd(z) + w(n)(Z)OTn+2 :

On the other hand the mapping B: @ — SR(*1E;F) for k=0,1,...,n-1is
€1 and By : Q— ZR("2E;F) is given by

Bk/(z)(h)(hl 1y hn+l)
= w(n)(z)(h’)(h'l r"'1hk)°Tn+1—k(hk+l)(hk+2>”'1hn+1)

5

( ) = w(n. )(z)(h)(hl ) '“)hk)hk+2y""h'n+1 7hk+1)'

Hence A isa #7*! mapping and
n—1

(6) A (z2) = wmD(2) oy 5(2) + WM (z) 0Ty ,0(2) + F By (2).
k=0

Let Cp:Q-— ZR(™2E;F), k=1,..,n, be defined by

Ck(z)(hl 1"')h'n+2) = w(n)(z)(hl ) "'rhk)oTn+2—k(h'k+1)(h’k+2) :hn+2)'
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Define Cy(z) = w®)(2)o7,,s. For k=1,...,n, we have the following equalities

w(n)(z)(h’l 1o h'k)o Tn+2—k(hk+1)(hk+2 PRERE) h'n+2)
= [w(n )(Z)(h1 )][(hZ PR hk)oTn+2-k(h'k+l)(hk+2) R hn+2)]
= w(n)(z)(hl)[(vl 1oy vk-l)oTnH —(k—l)(vk)(vk+l 1o vn+l)]

(where v;_; = h; forall j, 2<j<n+2).
These equalities together with (5) imply that

Ci(2) = B;:_l(z).

The last equality together with (6) imply that
n
APD(2) = wm(2) 0 T(rary42(2) + T Ci(2)-
k=0
This proves (3) for n+ 1 and by induction this complete the proof. &

Now, we are in a position to prove our main result.

THEOREM 2.5. Let E be a complez normed space and lgt 0 be an open
subset of E. Let w: Q—— A99)(E) be a holomorphic (0,q) formon Q, ¢ >1. If
u:Q— AOG-1(E) is defined by u(z) = w(z)(z), then v is a € (0,g-1)
form and 6u = w on Q.

Proof. By the inclusion A(%4)(E) =< #(9E), we may suppose that
w:Q— LUE) is a €® mapping. In fact w:Q— LR(IE; £(¢"1E)) and
uv:Q— Z(9-1F). By (1), uvis %! and ;

(7 u(z) = w'(z) o T9(2) + w(z).
Now, w’ can be seen as the following ¥ ® mapping
w:Q— LR(E, LR(E, LR(171E))) = LR(2E, LR(1"1E)).
Consider the mapping
A:Q— ZR(E, £g(171E)) = Lg(9E)

defined by A(z) = w'(2) o T9(2) = w'(2)(.,2) = w'(2)(.)(2).
By applying lemma 2.4, A is a ¥® mapping. Hence, (7) shows that u is
#® on Q. From (7) it follows easily that
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(8) (0)u(2)(y) = [0)w(2)(y,2) + w(z)(y) for ze€Q and ye E.

Since w is holomorphic, w'(z) € L¢(E, £(9E)) and hence [d|w(z)(y,z) =0
for all y € E. Hence, (8) can be written as

[0]u(2) = w(z).
Since w(z) is an alternating g—anti—linear form, we have 0u = w.
This complete the proof of theorem 2.5. |

We now solve the d-problem for holomorphic (0,g) forms, ¢>1, on
Fréchet—Montel and DFM spaces.

THEOREM 2.6. Let E be a compler DFM or a complez Fréchet— Montel
space and let w: E— A09)(E), ¢>1, be a holomorphic (0,q) form on E. If
uw: E— AO-1(E) s defined by u(z) = w(z)(z), then u is a #® (0,g-1)
form on E and 6u = w on E.

Proof a) Let E be a DFM space. By a result of Colombeau and Mujica [2]
on factorization of holomorphjc mappings from a DFM space into a metrizable
locally convex space, we have for holomorphic w: E — A(04)(E), ¢>1, that
there exists a convex, balanced, open subset U of E such that w factors as in
diagram

E —Y A0, (E)

| Jom
Ey —2 A0 (B )

where Ej is the normed space associated with U, 7y is the canonical map,
qwu(.ztf)(yl,...,yq) = ff(ﬁl,...,g]q), my(y;) = y; and w is a holomorphic mapping

of bounded type, i.e., bounded on the balls of E,.
Theorem 2.5  implies that @:E— A¢-1)(E;)  defined by
u(z)=w(z)(z) is #®. In fact, 4 is a (0,g—1) form of bounded type and 0u =
on Ey. Hence a #® (0,g—1) form u: E— A®4-1)(E) can be defined such

that u is of uniform bounded type, i.e., the following diagram commutes

TE —L A0 (R

Wul 1q'l7fu

By —% AO.- 1) (R )
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and Ou = w on E. We refer to [7] (Section 5) for further details. It is easy to see
that u(z) = w(z)(z).

b) Now, we prove theorem 2.6 for a Fréchet—Montel space E. Following argu-
ments given in [9] (lemma 3.3) we can show that a holomorphic (0,¢) form w on
E can be locally factorized through some Ey, i.e., for every z € E there exists a
convex, balanced, open subset U of E such that w factors as in the diagram

z+U cE —Y 4 A0 (E)

| Jrm
i+ U cEy —% AO0.9)(Ey )

where &, is a holomorphic (0,q)—form on £+ U.

By theorem 2.5, 4, :Z+ Uc Ey— AO4-1)(Ey) defined by u(z)=
Gy (2)(2) is €® and Bi, = &y, in £+ U.

Now u: E— A(9-1)(E) defined by u(z)= w(z)(z) factors as in the
following diagram

z+U CE —%s A1) (E )

7rUl lq'lru
i'f‘ (j CEU A—‘ A(O’q'l)(EU )

In particular, u is #®, u factorizes locally through some Ej and du = w
on E. Theorem 2.6 extends to holomorphic (0,q) forms, results given in (7], for
holomorphic (0,2) forms on DFN spaces, and results in [9], for holomorphic (0,1)
forms on Fréchet nuclear spaces.
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