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1. INTRODUCTION AND PRELIMINARY RESULTS

Let d+1 be a square free positive rational integer, such that the
corresponding imaginary quadratic field Q(y/—d) is of class—number one. Set
K:=Q(/-4d).

Corresponding to @ is the well-known Euler constant + given by:
L a1
v=tim,, (5,5 - Logn).

Our aim here is to use the Kronecker first formula (see [7]§1) and a result
from the work of Chowla and Selberg [2] to get the explicit value of yx, i.e., the
analogue of the Euler constant corresponding to the field K.

DEFINITION. The Dedekind zeta—function is defined for Re(s) > 1 by:

k() =T oy

o

where « runs through all integral divisors of the field K and Ne denotes the norm
of the divisor a.

PROPOSITION. (See [3]§8 or (7] §1) The Dedekind zeta— function (k(s) has
a meromorphic continuation to the whole s—plane, with a simple pole at s=1.
Furthermore we have:

Res((k(s),s=1) = pg = 27r/wa(1 ,
where wyg denotes the number of roots of 1 contained in K.
Remark. To compute pg we have used the following facts:
i) The general formula for the residue given in [3].

ii) The regulator for imaginary quadratic fields is, by definition, equal to 1.
iii) If 7y and 27, denote, in general and respectively, the real and complex
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embeddings of a number field in C, then for our particular field K it is, clearly,
n=0andrp=1.

DEFINITION. The Euler constant +7g corresponding to the imaginary
quadratic field K is given by:

Tk =lim

n—+o (ZNa<n Nlt; - 7rLogn) ’

where the sum is taken over the integral ideals a of K whose norm Ne is smaller
than the integer n. ’

PROPOSITION. ([7]) For s mear 1, the meromorphic function (x(s) admits
the following Laurent series: -

p 1
(k(s) = i

+ — 9k +o(s—-1),
s — 1 wg

where yg 15 the Euler constant corresponding to the field K.

Now, from [4] we get, for Re(s) > 1/2:

1 2

(k(s)=—1|—

wg (Vd

where E(7,s) is' the Eisenstein series for the following positive definite binary
quadratic form:

S
E(r,s), *)

Q(u,v) =y 1 (u2|7|2 + 2uvRe(7) + v?)

in which the complex number 7 := z + iy is given by the formula ([6]):

Lo/ = 3 (modd)

2

1

{iﬁ if d =1o0r2(mod4)
T =

Hence, we get:
1 29 ys
k(s)=—|—=1| 2 g —————
wy ‘/a (m,n)eZ Im + nTIZs )

where the dash indicates that m = n = 0 is excluded from the summation.

2. MAIN RESULT
We prove the following:

THEOREM. Let d+1 be a square free integer and let K := Q(J/—d) be the
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corresponding imaginary quadratic field whose class—number is assumed to be 1.
Then, the Euler constant g corresponding to K is given by:

4T 1 w
T d d
Y = ——[’7+5L0g -_y@—zzm=l ';) LOgI‘(%)

where (%) 18 the Kronecker symbol and w 1is a constant depending on K and given

?

in the proof below.

Proof By the Kronecker first limit formula we have:
s

tim, [ B(sr) ~ ——] = 2n(7 - Log2 - Log(4F1n(r)12))

S —-—
where v is the usual Euler constant (i.e., corresponding to Q), y :=Im7 > 0, and
7n(z) is the Dedekind eta—function defined for Im(z) > 0 by:

n(z)=exp[%]ﬂ?’:0(l—e2“il) (Im(2) >0) .

From the known relation between the Dedekind zeta—function and the Eisenstein
series, we deduce:

47 1
W= (v- 5Log(2¢a) ~ Log(vy |n(7)|2)) ,
whence: .
T 1 i
me= = (7 - SLoa(2d) - Logl4) - Log(ar|a(n)7%))

where, as in the theories of modular and elliptic functions, the discriminant A(z)
is defined by: '

A(z) = (2m)'2 (n(2))** .
Moreover, the Chowla—Selberg formula ([2], p. 110) gives:
1 (i) 3w
d m
AN = s [nmzlr(%)
(2.”)18(16 !
where (—’%) is the Kronecker symbol ([5], p. 89) and:

)

6if d=3
w=1{4if d=4 _
2 otherwise .
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Combining the final results obtained for vy, and A(7), we easily deduce the
announced result for the Euler constant. 1

3. EXPLICIT COMPUTATIONS FOR THE CYCLOTOMIC FIELD Q(j)

In [1], and through the study of some elliptic integrals, we obtained modular
identities closely related to the lattice Z + jZ where j denotes the primitive cubic
root of unity. Among these identities we got the explicit value of the Weierstrass
invariant g3(1,7) ([1], p- 420; it is well-known that go(1,7) =0).

As an application of this, we get the following:

PROPOSITION. The Euler constant corresponding to the cyclotomic field

QJ) is: ) 1
m 3
1
Yoy = — | v+ —Log3 + 2Log7 - I'{z) ).
w= (1 ()
Proof. Using the result of the theorem above and results about cyclotomic
fields ([8] §11), we easily get:

47 9
Q) = \/—g (7 - Logd + Logy3 - Log|n(3)| )

Moreover, the discriminant A(z) is related to the Weierstrass invariants by the

formula:
A(z) = g3(z) - 27¢%(z),
and since:
1 18
. 1
g93(1,5) = z)
oy (3)
we easily deduce:
41/8
. 2/3( 1
()| = —1r?3(3),
27

and this completes the proof of the Proposition. §
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