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1. INTRODUCTION

This work concerned with the study of the flow of an incompressible
viscoelastic fluid of White—Metzner type (see [1,2,5]). These models lead to
systems of partial differential equations that are evolutionary, are globally well
posed (see [3]). The objective of this article is to prove the local and global
existence of solutions of these systems. This paper is organized as follows. In the
next section we formulate the mathematical problem. The third paragraph is
devoted to local and global existence of solutions of the system for arbitrary data
in some appropriate Sobolev space.

2. GOVERNING EQUATIONS

We examine parallel shear flow. The flow is incompressible. The total stress
is composed of the pressure term —p/l, plus the extra stress tensor 7. For the
White—Metzner model the extra stre—ss is taken to be the sum of a_polymeric
contribution 77, and an added Newtonian solvent term 7°, given by:

P + Ay = 20

ng

(a) (1)
75 =2y D (b)
where D is the symmetric part of the velocity gradient tensor, /I is the second

invariant of the rate of deformation tensor (II:=2tr(D?)), A, and @y are
respectively the relaxation and viscosity functions which depend on II (In the

present work, we focus on a class of specific formula for A;; and 7;;), 7> 0 is the

retardation time, the symbol Tp_t denotes an objective derivative (see [3]). This
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model includes many of the classical constitutive equations as special cases (see
(2, 3]). We assume that the flow variables are independent of y. Therefore the

velocity field is U = (0,v(z,t)) where z€ 1= [:%%

automatically satisfied. Futhermore, the components of each partial stress tensor

] and the balance of mass is

7P can be writen

TP = 17(z,t) TP = TP = o(z,t) Th = 7(z,t) .

The pressure takes the form p = — py(z,t) — f(t)y, f being the pressure gradient
driving the flow. In these terms, the dimensionless time—dependent parallel shear
flow equations are given by (for the detail see [2, 3])

éevt — 0y =0Ovget f (8.)
o =12+ wlve = —0 [ Ay (b) (2)
Zt+ Uy = —Z/ )\” (C)

where w =1 — 7 is the viscosity ratio, 7 = ng/M0, 11 = M1/ Aus Re = Relw is
the Renolds number, § = (1 -~ w)/w, Z:=(1 - ¢)y— €7 (0<eg1) and
We 1+ (M)
Ay = ————, M= (3)
[1+ We2lI)P [1+ We2Il™
The boundary and initial conditions are given by (see [6])

o(3,t) =0 v(

N —
=
Il
o

(a) (4)
v(z,0) =wvo(z), o(z,0)=o09(z), Z(z,0)= Zyz) (b) .

3. LOCAL AND GLOBAL EXISTENCE OF REGULAR SOLUTIONS

In this section we implement a fixed point argument to show the existence
of a regular solution to problem (2) — (4) on a small interval [0,T*].

THEOREM 1. Assume fe Ll (R, H'), fell (R, HY), ZyeH?,

og € H2(1) and vq € H2(1) nHol(I) . Then there exists a T* > 0,
ve L0, 75,83 n (0,7, H%nHg) , vel® 0,75 nc([0,7%,12)

(0,2) ¢ [c([o,T*],H2)]2 L (0n2)€ [Lm([O,T*],HI)]2
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such that (v,0,Z) is a solution to problem (2) — (4).

Idea of the proof. The proof of Theorem 1 is obtained by Schauder’s fixed
point theorem. We first study two linearized problems, one for the velocity v and
the other for the polymeric stress (see [2, 3, 7]).

(i) Let T be a given positive real number, we consider the following linear
problem: To find v such that

Revy, — Ov,, = F (5)
v(z,0) = v(z)
where F' is a given external body force.
The proof of the existence of the solution of this system is classical. For
similar calculation see [2, 3, 7].
(ii)) We turn now to the study of linearized problem associated to the
constitutive equation.
Let 5eL*(0,7*H% nC([0,T*],H>nHy) is given. We consider the
following system :
ot (of M) = (24 wi)
4+ (of b)) = - vy (6)
o(z,0) = a¢(z) , Z(z,0) = Zy(z)

and we show that ¢ and Z satisfies the following estimates
2 2
{01 a0 7,52y + 120 00,1 42y} <

2
c(1 + Jlool3 +

Zy

3) % (1 181250 7.9y ) % (1 1812 0gg 7 2,)

2

1 < (0 + 1020 1. 2y) (14 Il + 1212
C(1 4 138y g g2y ) (14 ol + 12))

. -
1217 < C(1 + |2l

where C= C(I,A,p). For the detail see [3, 7).
(ili) We consider the mapping
: ;o 2 1 0o 1)12
®: Ry — Xp o= C([0,7),H#%nHy) x[c([0,7],1")]
(9,6,2) — (v,0,2)
where v and (0,Z) are the unique solution of (5) and (6) respectively, with
F=o,+ fand Ry is define by
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Ry = {  (,6,2): 5e %0, 7,8 nc((0,T),H*nHy)
' i€ L°0,T,L%) nL%0,T,H"Y,

(6,2) €[50, 7,50, (57 € [Lm(O,T,Hl)]2 ,

12 -2 ) 2
191 a0, 7,m2) + W90p200,7,03) + 19N oo, 7,02y + 1V I 20,111y < B
~2 512
"U"L“’(O,T,Hz) + “Z"L‘B(O,T,Hz) < BZ )
lo|? + 122 < B
L0,T,HY) L0, 7,HY) S T2
17(0)=Uo, (3:(0)’—“0'0, Z~0=ZO il’l [ } .

And we show that if B; and B, are large enough, then R+ @ for all 7 >0
see [2, 3].

A fixed point of ¢ is clearly a solution of (2) — (4). First we prove the
existence of T* small enough so that ®(Rq«) C (Ryx). The conclusions of
Theorem 1 follow from Schauder’s fixed point theorem applied to the mapping &
on the convex set Rp«. Indeed it is easly to show that Ry« is closed in Xp«.
Moreover, by Ascoli’s theorem, Rpx is compact in Xpx. Standard arguments
prove that ¢ is continuous for the topology of Xy« (for the details see [3, 7]).

We now state the theorem of existence of a global solution.

THEOREM 2. There ezist some 0y, 0 < 0y < 1, depending on I, A and p such
that if 0g< 0<1 and if e HNHG , o€ H', Zye H', fe L°(R,,H") and
fe Lw(R,,H_l) are small enough in their spaces, then the problem (2) — (4)
admits a unique solution (v,0,Z) defined for all times ¢ and satisfies

ve Cy(R,,H N Hy) N L, (R,H) v e Cp(R,LO) N LG, (R,HT)

loc
(0.2)e[cy(R, B, (0°2)¢[Co(R, . HY)" .

Idea of the proof. We show that the local solution obtained in Theorem 1 is
actually define on R, if the data are small enough. To this end we derive some a
priori bounds uniform in time, satisfied by the solution. For the details see
[2,3,7]

Remarks. (i) Condition 0y < 0 <1 means that the fluid has a certain
amount of Newtonian viscosity.
(ii) No result such as Theorem 2 seems to be known for 0=0. We have
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however to mention Kim [4] where the upper—convected Maxwell model in the

whole space R, is considered.
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