Non-attainable Boundary Values of H[®] Functions

BORIS KORENBLUM AND JOHN E. MCCARTHY¹

State University of New York, Albany, New York 12222, U.S.A. Washington University, St. Louis, Missouri 63130, U.S.A.

AMS Subject Class. (1980): 32A35, 47B35, 46E10

Received April 13, 1993

1. STATEMENT OF RESULT

Let B_d denote the unit ball in C^d , and let $H^{\varpi}(B_d)$ be the space of bounded analytic functions in B_d . It is well-known that if m is in $H^{\varpi}(B_d)$, then $m^*(\zeta) := \lim_{r \to 1^-} m(r\zeta)$ exists for σ_d -a.e. ζ on the boundary of B_d , where σ_d is normalized (2d-1)-dimensional Lebesgue measure on the sphere S_d [5]. Moreover, given m^* , one can recover m by integrating against the Poisson kernel. We are interested in the following question: if g is a non-negative function in $L^{\varpi}(\sigma_d)$, when does there exist a function m in $H^{\varpi}(B_d)$ with $|m^*| = g \sigma_d$ -a.e.?

As the function $\log |m|$ is subharmonic, there is one obvious necessary condition, namely that

$$\int_{S_d} \log(g) \, d\sigma_d > -\infty. \tag{1.1}$$

For d=1, (1.1) is also sufficient, as g is then the modulus of the outher function

$$g(z) = \exp\left[\int_{S_d} \frac{e^{i\theta} + z}{e^{i\theta} - z} \log(e^{i\theta}) d\sigma_1(e^{i\theta})\right].$$

(This answer to our question for d = 1 is due to Szegö [7]).

For d>1, condition (1.1) is necessary and sufficient for g to be the modulus of a function in the larger Nevalinna class $N(B_d)$, consisting of those holomorphic functions f on the ball for which

$$\sup_{0 < r < 1} \int_{S_d} \log^+ |f(r\zeta)| \, d\sigma_d(\zeta) < \infty$$

¹ Partially supported by the National Science Foundation grant DMS 9296099

[6, Theorem 10.11]. It is no longer sufficient, however, for g to be the modulus of a bounded analytic function, because the function

$$\zeta \longrightarrow \operatorname{ess} \sup_{-\pi \leqslant \theta \leqslant \pi} |m^*(e^{i\theta}\zeta)|$$

must be lower semi-continuous on S_d if m is in $H^{\varpi}(B_d)$ [6]. If g is bounded below, then (1.1) and some semi-continuity condition is sufficient: in [6, Theorem 12.5], Rudin proves that if g is log-integrable, and there exists some non-zero f in $H^{\varpi}(B_d)$ with $g \geqslant |f^*|$ a.e. and $g/|f^*|$ lower semi-continuous, then there does exist m in $H^{\varpi}(B_d)$ with $g = |m^*|$ a.e.

Our result is that if g is not bounded below, then log-integrability and continuity do not suffice for g to be the modulus of a holomorphic function:

THEOREM 1.2. Let $d\geqslant 2$. There is a continuous non-negative function g on S_d , vanishing only at the point e_1 , and satisfying $\int_{S_d} \log(g) d\sigma_d > -\infty$, with the property that the only function m in $H^{\infty}(B_d)$ with $|m^*| \leqslant g$ almost everywhere $[\sigma_d]$ is the zero function.

2. Idea of Proof

The Smirnov class $N^+(B_d)$ consists of those functions f in $N(B_d)$ for which $\{\log^+|f(r.)|: 0 < r < 1\}$ is a uniformly integrable family on S_d . Equipped with the metric $\rho(f,g) = \int_{S_d} \log(1+|f-g|) d\sigma_d$, it becomes a topological vector space that is not locally convex. Just as in the d=1 case [3], it can be realised as an inductive limit of Hilbert spaces. For w a non-negative function in $L^1(\sigma_d)$, let $P^2(w\sigma_d)$ denote the closure of the polynomials in $L^2(w\sigma_d)$. Then

$$N^+(B_d) = \operatorname{U}_{\log(w) \in L^1(\sigma)} P^2(w\sigma_d).$$

 $N^+(B_d)$ is, however, strictly larger than

$$U_{m \in H^{0}(B_d)} P^{2}(|m^*|^2 \sigma_d) \tag{2.1}$$

The idea is to construct a linear functional Γ on (2.1) that does not extend to $N^+(B_d)$, and show that there is actually a continuous w such that Γ is not bounded on $P^2(w\sigma_d)$.

Now if $\Gamma(\zeta^{\alpha})=c_{\alpha}$, then Γ is bounded on $P^2(|m^*|^2\sigma_d)$ if and only if the function $f(z)=\Sigma\,c_{\alpha}z^{\alpha}$ is in range of the co-analytic Toeplitz operator $T_{\overline{m}}$ on $H^2(\sigma_d)$ [1]. (For any measure μ , the Toeplitz operator $T_{\overline{m}}$ is defined on $P^2(\mu)$

by

$$T_{\overline{m}}^{P^{2}(\mu)}f = P\overline{m}f,$$

where P is the orthogonal projection from $L^2(\mu)$ onto $P^2(\mu)$.)

We prove the following:

THEOREM 2.2. Let $f(z_1,\ldots,z_d)=f_1(z_1)=\sum_{n=0}^{\infty}a_nz_1^n$, and suppose that $a_n=O(e^{-cn^{1/2}+\epsilon})$ for some $\epsilon,c>0$. Then f is in the range of the Toeplitz operator $T_{\overline{m}}^{H^2(B_d)}$ for every non-zero m in $H^{\infty}(B_d)$.

The proof of 2.2 uses the techniques of [2] for studying Toeplitz operators on weighted Bergman spaces.

Nawrocki proved in [4] that Γ is in the dual of $N^{+}(B_d)$ if and only if

$$\Gamma(\zeta^{\alpha}) = O(e^{-c |\alpha|^{d/(d+1)}}$$
(2.3)

We exploit the gap between (2.3) and Theorem 2.2 as follows. Choose some number between 1/2 and d/d+1, e.g. 7/13, and let Γ be given by

$$\Gamma(z_1^{\alpha_1} \dots z_d^{\alpha_d}) = \delta_{\alpha_2,0} \dots \delta_{\alpha_d,0} e^{\alpha_1^{-7/13}}.$$

Let

$$F_{c,w}(z) = \exp\left[c\frac{1-|w|^2}{(1-\langle z, w \rangle)^{d+1}}\right]$$
 (2.4)

Then, using estimates of Nawrocki on the Taylor coefficients of 2.4 [4], we can pick c_n and r_n so that

$$\sup_{\{\zeta: |\zeta-e_1| \geqslant 1/n\}} c_n |F_{c_n, r_n e_1}(\zeta)| \leqslant 1/2^n,$$

and

$$\int_{S_d} \log (1 + |c_n F_{c_n, r_n e_1}| d\sigma_d \leq 1/2^n,$$

while $\Gamma\left(c_{n}\,F_{c_{n}\,,r_{n}\,e_{1}}\right)$ tends to infinity. Then

$$g(\zeta) = \left[\frac{1}{1 + \sum_{n=1}^{\infty} |c_n F_{c_n, r_n e_1}(\zeta)|^2}\right]^{1/2}$$

satisfies the hypothesis of Theorem 1.2.

REFERENCES

- 1. HELSON, H., Large analytic functions II, In "Analysis and Partial Differential Equations", Cora Sadosky, ed., Marcel Dekker, Basel, 1990.
- M^cCARTHY, J.E., Coefficient estimates in weighted Bergman spaces, to appear. M^cCARTHY, J.E., Common range of co-analytic Toeplitz operators, J. Amer. Math. 3. Soc. 3(4), 1990, 793-799.
- 4. NAWROCKI, M., Linear functionals on the Smirnov class of the unit ball in Cn, Annales Acad. Sci. Fenn., 14 (1989), 369-379.
- RUDIN, W., "Function Theory in the Unit Ball of C", Springer-Verlag, Berlin, 5. 1980.
- RUDIN, W., "New Constructions of Functions Holomorphic in the Unit Ball of C_n^n ", C.B.M.S., no. 63, American Mathematical Society, Providence, 1986. 6.
- 7. SZEGÖ, G., Uber die randwerten einer analytischen funktionen, Math. Ann. 84 (1921), 232 - 244.