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1. STATEMENT OF RESULT

Let By denote the unit ball in C%, and let H®(B;) be the space of bounded
analytic functions in By. It is well-known that if m is in H®(B;), then
m*(¢) :=lim,;-m(r¢) exists for gg—a.e. ¢ on the boundary of By, where oy is
normalized (24 —1)—dimensional Lebesgue measure on the sphere S; [5].
Moreover, given m*, one can recover m by integrating against the Poisson
kernel. We are interested in the following question: if ¢ is a non—negative
function in L%(oy), when does there exist a function m in H®(B;) with
|m*| =g og—a.e.?

As the function log|m| is subharmonic, there is one obvious necessary
condition, namely that

f log(g)dog > — 0. (1.1)
Sa
For d =1, (1.1) is also sufficient, as g is then the modulus of the outher function

e + 2 , _
g(z)=epr ——log(e®)day () |.

Sgev’—z

(This answer to our question for d =1 is due to Szegd [7]).

For d > 1, condition (1.1) is necessary and sufficient for g to be the
modulus of a function in the larger Nevalinna class N(By), consisting of those
holomorphic functions f on the ball for which

o512, 1og (Ol daa() < o0
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[6, Theorem 10.11]. It is no longer sufficient, however, for g to be the modulus of
a bounded analytic function, because the function

— ess sup |m*(e®
(— ess_sup |m¥(e0)]

must be lower semi—continuous on S; if m is in H®(Bg) [6]. If g is bounded
below, then (1.1) and some semi—continuity condition is sufficient: in [6,
Theorem 12.5], Rudin proves that if g is log—integrable, and there exists some
non—zero f in H®(By) with g > |f*| a.e. and g/|f*| lower semi—continuous,
then there does exist m in H®(By) with g = |m*| a.e.

Our result is that if g is not bounded below, then log—integrability and
continuity do not suffice for g to be the modulus of a holomorphic function:

THEOREM 1.2. Let d >2. There is a continuous non—mnegative function g
on S;, vanishing only at the point e, and satisfying [g;log(g)dog > — o0, with
the property that the only function m in H®(By) with |m*| < g almost everywhere
[oq4] is the zero function.

2. IDEA OF PROOF

The Smirnov class N*(By) consists of those functions f in N(By) for which
{log*|f(r.)] : 0< r <1} is a uniformly integrable family on S;. Equipped with
the metric p(f,g9) = [g,log(1+ |f—g]|)doy, it becomes a topological vector space
that is not locally convex. Just as in the d =1 case [3], it can be realised as an
inductive limit of Hilbert spaces. For w a non—negative function in L!(oy), let
P2(way) denote the closure of the polynomials in L2(woy). Then

N*(Bg)=U P2(way).

log(w) € L1(0)
N*(By) is, however, strictly larger than

U e sy P21 1200) (21)

The idea is to construct a linear functional I' on (2.1) that does not extend
to N*(By), and show that there is actually a continuous w such that T is not
bounded on P%(way).

Now if I'({®) = ¢4, then T is bounded on P2(|m*|204) if and only if the
function f(2) =X cy,2® is in range of the co—analytic Toeplitz operator T3 on
H?%(a4) [1]. (For any measure y, the Toeplitz operator T+ is defined on P2(u)
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by
7P = pmf,

where P is the orthogonal projection from L2(u) onto P2(u).)
We prove the following:

THEOREM 2.2. Let f(21,..-,25) = fi(z1) = Sn—0@n2 ", and suppose that
a, = 0(6'0"1/2”) for some €,¢>0. Then f is in the range of the Toeplitz
operator T-,,;H (Ba) for every non—zero m in H®(By).

The proof of 2.2 uses the techniques of [2] for studying Toeplitz operators on
weighted Bergman spaces.
Nawrocki proved in [4] that T is in the dual of N*(By) if and only if

F(C“) _ O(e'clald/(d+l)

We exploit the gap between (2.3) and Theorem 2.2 as follows. Choose some

number between 1/2 and d/d+1, e.g. 7/13, and let T' be given by
-7/13
ay

(2.3)

P(21 . 23%) = 8ag0 - Bago
Let
1-|w| 2
F. o(2) = expe———— (2.4)
(1-<z, w>)d+

Then, using estimates of Nawrocki on the Taylor coefficients of 2.4 [4], we can
pick ¢, and 7, so that

sup | F ¢)| <1/2m,
{(:l(—31|>1/n} I cn,rnel( )l /

and

dexog(1+ |eaF, |, ldog <1/2,
while I' (¢, F ) tends to infinity. Then
CniTn €1

1 1/2

9(¢) = |-
1+Zﬁ=1 |an°m"ne1 (C)|2

satisfies the hypothesis of Theorem 1.2.
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