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If X is a Banach space, A is a bounded set in X, z¢€ X, we put f,(z)
= supgeallz—a|. The Chebyshev radius of A is the number ry(A4) =inffy(X).
The point z is a Chebyshev center of A if fy(z) =ry(A4).

It is not difficult to prove (using a weak—compactness argument) that if X
is reflexive then each bounded set A c X admits at least one Chebyshev center.
S. Konyagin [3] proved that if X is nonreflexive then it can be equivalently
renormed so that a three—point set A ¢ X have no Chebyshev center.

Analogously, we can define £, (z) = (1/n)2] =1||z— ¢;|| and r(4) =inff(X)
if A={ay,...,a,}C X is a finite set (the normalizing factor 1/n is not essential
for our purposes). Following [1], we call a median of A each point z € X such
that fi(z) =mr(4).

Again it is easy to prove that in reflexive spaces medians of finite sets
always exist. In [1], Section 7, the authors ask whether the Konyagin’s result
holds also for medians. The aim of the present paper is to give an affirmative
answer, even for a general class of centers defined by monotone symmetric norms
on R3. The presented proof is a generalization of Konyagin’s idea in [3]. Let us
remark that our Lemma 1 and Lemma 2 about norms on R® may be of
independent interest.

As usual, if z=(z(,.,2,)eR* we put |z|=(|z],...,]z,]) and
|zlo = max{|z,|,...,]z,|}. We consider the coordinate—wise ordering on R":
(21,2 ) (Y1 5--» Yn ) iff 7; < y; holds for all i =1,...,7.

A norm 7 on R" is symmetric if 7(z;,...,2,) = T(Zp(1) 5> Tp(n)) Whenever
p is a permutation of {1,..,n} and (z,...,2,) €R?, and 7 is monotone if
7(z) < 7(y) whenever |z| <|y]|, z,y € R™.

Before defining generalized centers let us state two lemmas on symmetric,
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resp. symmetric and monotone norms on R”?. The proof of the first one was
suggested by E. Casini.

LEMMA 1. Let 7 be a symmetric norm on R*, and (zy,...,2,) € R* be such
that ; > zo. Then

T(Zy,29,23,, 2y ) S T( 21+ €,Z9— €,23,..., T,)

for any € > 0. Moreover, if w is strictly convez then the inequality becomes strict.

Proof Denote
T =(21,22,23,--,Tn)
y=(z+€,59—€,23,..,2,)
z2=(zy—€,29+€,23,...,T,)
v=(1,-1,0,..,0).

Then y =z + ev and 2z = z— (€ + 2, — zp)v. Consequently, z is a nontrivial convex
combination of the points y, z. The assertion of Lemma 1 follows from the
convexity (resp. strict convexity) of = and from 7(y) = n(z)>0. 1

LEMMA 2. Let 7 be a symmetric monotone norm on R", z,yeR",
lz] <ly| and ||z)lo < |yllo- Then m(z) < n(y).

Proof. Suppose z #0 (for z =0 the assertion is trivial).
(a) At first, let us prove Lemma 2 for

z=(2,2,23,..,2,) 20
Y =(91,%,73, %)
v > o = [|z]o-
It is possible to assume that z; > 0 for each :=1,...,n (for otherwise we can

forget about the coordinates with z; =0 and solve the problem in a space of
smaller dimension). Choose ¢ > 0 and § > 0 so small that

(1+6)(z;+(n—1)e) <y and
0<(1+6)(z;—€)<z fori=2,.,n.

Using n—1 times Lemma 1 (for the first and i—th coordinates, i = 2,...,n) and
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the monotonicity of 7 we get
(21, %9, T ) K T(Ty +(n—1)€, 20— €,..., T, —€)
<(1+8)7(z+(n—1)e,z9—€,..., T, —€)
<T(Y1,%25,2n)-

(b) We are ready to prove the general case. It is possible to assume that
l¥lle = |y1|- The assertion follows easily from (a):

7(z) < 7(llellw | Z2lseo |70 1) < TN Yllas|22]s |20 1)
<m(lwblvaloslyn ) =m(y). B
Let us define generalized radius and center of finite sets. For the first time
this definition appears in [2] by R. Durier. It is easy to see that if 7 is the £,— or

{,-norm on R™ then m—centers are simply the Chebyshev centers or medians,
respectively.

DEFINITION. Let 7 be a norm on R®. For a subset 4 = {q,,...,a,} of a
normed linear space X, the number

ro(4) = inf 7]z - ayl, o= o)

zeX
is called the 7—radius of A. Any point z5€ X with 7(||zp— a1]|,-- 20—, l) =
r.(A4) is called a m—center of A.

We shall consider norms 7 on R® and three—point sets A only. The
following simple lemma about w—centers of a concrete three—point set in the
plane (equipped with the max—norm) describes a situation which we are going to
"imitate" in the proof of our main result.

LEMMA 3. Let m be a symmetric monotone norm on R3. If (z,0) is a
7w —center of the set

AO = {(0:1) ) (0)_1)) (%70)}
in (R, |.o) then 2<z<1.
Proof. Denote

f(2) = 7(1(2,0)= (0, 1), (2,0) = (0, ~1)w, (=, 0) = (3 0) 1)



128 LIBOR VESELY

= m(max{|z|,1},max{|z|,1}, |z -3]).
If z <% then |z—%| > 1. Lemma 2 implies

f@ =711 < 7(1,1,|z-3)) < f(2).
So (z,0) cannot be a m—center of 4.
If £ >1 we can write £ =1+ ¢ where ¢ > 0. By Lemma 2 and Lemma 1 we
obtain
f)=7(1,1,3) < 7(1+€,1,3) <T(L+e,14€,5-€) =f(3) .

Neither in this case (z,0) is a 7—center of 4g. 1§

It is easy to prove, using a weak—compactness argument, that for any
monotone norm 7 the 7—centers always exist in reflexive Banach spaces. The
main result of this paper concerns the opposite implication: given a symmetric
monotone norm 7, the existence of w—centers of all three—point sets for every
equivalent renorming implies reflexivity. The main idea of the proof comes from
[3] where a particular case (Chebyshev centers) was proved.

THEOREM. Let X be a nonrefletive Banach space. There ezists a
three—point set A ¢ X with the following property: for each symmetric monotone
norm m on R3 there ezists an equivalent morm ||.|| on X such that A has no
m—center in (X,||.[)-

Proof. Choose a closed subspace Y of codimension one in X, and a point
g € X\Y. Since Y is nonreflexive, by the James theorem there exists a
norm—one functional y* € Y* that does not attain its maximum value on the
unit ball of Y. Choose y; € Y with y*(y;) =1 and define

3
A= {21,—1'1, 51/1}‘

Let 7 be a symmetric monotone norm on R3. We shall define an equivalent norm
ll.ll on X with which no m—center of A exists.
Let Agc (R?,]|.|o) be as in Lemma 3. Denote
A =min{z € R | (z,0) is a m—center of Ag}.

(Of course Ay must have a m—center of the form (z,0) by symmetry: the set of
its m—centers is nonempty, convex and symmetric with respect to the z—axis.)
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Lemma 3 implies 1/2< A <1. Let a > 0 be so small that
a[r+3Inl] <§-»
where ||.|| is the original norm on X. Consequently the number
' f=1-a)
is positive since § > (3/2)—A—a) > a(3/2)| vl
Let us define an equivalent norm on X by the formula

lly + tz, | = max{a|yl + Bl¢], |[y*(¥)], 1¢]}-
Put

F(z) = n(lle—all, 1z + aall, llz - v ll)-
For y € Y, we have
F(y) = m(max{ea|y| + B, |y*(v)|,1}, max{ely| + 8, [y*(y)|,1},
3 3
max{ally— 3l [y*(y) - 3I}).

Let f be as in Lemma 3, i.e. f(¢)= m(max{|¢|,1},max{|£],1},|¢—3/2]), and
(&,0) is a m—center of Ay iff f attains its minimum at ¢. For simplicity denote

R=r(4A) and r=r(4p).

For any 0< e <\ choose y.€ Y such that |y =X and y*(y.)=A—e¢.
Considering that adA+f =1 and aly.—3/2y]<a(r +3/2|y]) <3/2-A <
3/2— X + ¢, we can compute

F(yo) = m(max{) —¢,1},max{) —¢,1},max{a|y.—3/2y1],3/2- X +€})
< m(max{X,1}, max{A,1},3/2=X +¢€)
< m(max{),1}, max{},1}, 3/2—X) + €7(0,0,1)
= f(A) + en(0,0,1) = r+ e7(0,0,1).

Then R < since € can be taken arbitrary small.

The monotonicity and symmetry of 7 easily imply that the function F is
convex and satisfies F(y+1tz)) = F(y—tz;) for all y € Y, ¢t € R. Consequently it
suffices to compute the m—radius of 4 as the greatest lower bound of F(Y), and
to prove that A has no w—center in Y. Suppose on the contrary that a point
y € Yisa m—center of A. Then
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3
r> R = F(y) >r(max{|y*(y)[,1}, max{|y*(y)| .1}, |y*(v) -31) = F(¥*(¥)) > .
This implies that R = r and (y*(y),0) is a 7—center of 4y. By Lemma 3

1
3 SA<yH(y) <L

Hence

r>R = F(y)=r(max{aly| + 6,1}, max {aly] + 4,1}, max{aly-Su],3- v*(s)})

>7(L,L5-9* () = f(y* () =r.
Therefore the last inequality is in fact equality. Denoting ¢ = max{a|y|+ 0,1},
n =max{aly - 3/2y],3/2 —y*(y)} and ¥ =3/2 —y*(y), we have the following
situation:

W(E’&)n)=7r(1)1719) a'nd (£7£’”)>(1)1719)'
Lemma 2 and the inequality ¥ <3/2—-1/2 =1 imply

allyl + 8 <& <&Mo =I(L1, )| =1.

But this implies |y||<(1-8)/a =X, a contradiction with the fact that
y*(y) = A, |ly*l=1 and y* does not attain its norm. N

Our Theorem and the remark after Lemma3 give the following
characterizations of reflexivity. (The equivalence of (i), (ii) and (v) for 7 = ||.|,
follows also from [3].)

COROLLARY. Let 2 be the set of all symmetric monotone norms on R3.
Let a my€e P be given. Let X be a Banach space and A be the set of all equivalent
norms on X. Then the following assertions are equivalent.

(3) X is reflezive.

(#) For each v € A every bounded B C X has a Chebyshev center in (X,v).
(#1) For each v € A every finite set F C X has a median in (X,v).

(iv) For each ve A and each T€ P every three—point set ACX has a
m—center in (X,v).

(v) For each v € A every three—point set A C X has a mg—center in (X,v).

(vi) For each three—point set A C X there ezists m€ P such that A has a
m—center in (X,v) whenever v e 4.
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Remark. Note that the proof of our Theorem gives a possibility to
construct concrete examples of three—point sets with no m—center. For example,
if 7 is the 4—norm on R3 and X =4, put Y ={(n,7m.-)€4 | ;; =0},
y*=(0,3/4,4/5,...,(n+1)/(n+2),...) € &y, y1 =(0,4/3,0,0,...). It is easy to see
that A =1 in this case, so the inequality a(A+3/2|y]) <3/2—A becomes
a(1+2)<1/2; thus we can take a=1/6. Then g =5/6. By the proof of
Theorem, the set

A ={(1,00,..), (-1,0,0,...), (0,2,0,0,...)}

has no median in (4, ||.||) where

I},

5 18 & 1
W, = max{ i+ 5 8 1ol | § 25,
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