## A Characterization of Reflexivity in the Terms of the Existence of Generalized Centers

## LIBOR VESELÝ

Dipartimento di Matematica, "F. Enriques", Università degli Studi di Milano
Via C. Saldini 50, 20133 Milano, Italy

AMS Subject Class. (1980): 46B03, 46B10

Received June 28, 1993

If X is a Banach space, A is a bounded set in X,  $x \in X$ , we put  $f_{\varpi}(x) = \sup_{a \in A} ||x - a||$ . The Chebyshev radius of A is the number  $r_{\varpi}(A) = \inf f_{\varpi}(X)$ . The point x is a Chebyshev center of A if  $f_{\varpi}(x) = r_{\varpi}(A)$ .

It is not difficult to prove (using a weak-compactness argument) that if X is reflexive then each bounded set  $A \subset X$  admits at least one Chebyshev center. S. Konyagin [3] proved that if X is nonreflexive then it can be equivalently renormed so that a three-point set  $A \subset X$  have no Chebyshev center.

Analogously, we can define  $f_1(x) = (1/n)\sum_{i=1}^n ||x-a_i||$  and  $r_1(A) = \inf f_1(X)$  if  $A = \{a_1, ..., a_n\} \subset X$  is a finite set (the normalizing factor 1/n is not essential for our purposes). Following [1], we call a *median* of A each point  $x \in X$  such that  $f_1(x) = r_1(A)$ .

Again it is easy to prove that in reflexive spaces medians of finite sets always exist. In [1], Section 7, the authors ask whether the Konyagin's result holds also for medians. The aim of the present paper is to give an affirmative answer, even for a general class of centers defined by monotone symmetric norms on  $\mathbb{R}^3$ . The presented proof is a generalization of Konyagin's idea in [3]. Let us remark that our Lemma 1 and Lemma 2 about norms on  $\mathbb{R}^n$  may be of independent interest.

As usual, if  $x=(x_1,...,x_n)\in\mathbb{R}^n$  we put  $|x|=(|x_1|,...,|x_n|)$  and  $||x||_{\infty}=\max\{|x_1|,...,|x_n|\}$ . We consider the coordinate-wise ordering on  $\mathbb{R}^n:(x_1,...,x_n)\leqslant (y_1,...,y_n)$  iff  $x_i\leqslant y_i$  holds for all i=1,...,n.

A norm  $\pi$  on  $\mathbb{R}^n$  is symmetric if  $\pi(x_1,...,x_n)=\pi(x_{p(1)},...,x_{p(n)})$  whenever p is a permutation of  $\{1,...,n\}$  and  $(x_1,...,x_n)\in\mathbb{R}^n$ ; and  $\pi$  is monotone if  $\pi(x)\leqslant \pi(y)$  whenever  $|x|\leqslant |y|$ ,  $x,y\in\mathbb{R}^n$ .

Before defining generalized centers let us state two lemmas on symmetric,

resp. symmetric and monotone norms on  $\mathbb{R}^n$ . The proof of the first one was suggested by E. Casini.

LEMMA 1. Let  $\pi$  be a symmetric norm on  $\mathbb{R}^n$ , and  $(x_1,...,x_n) \in \mathbb{R}^n$  be such that  $x_1 \geqslant x_2$ . Then

$$\pi(x_1, x_2, x_3, ..., x_n) \leqslant \pi(x_1 + \epsilon, x_2 - \epsilon, x_3, ..., x_n)$$

for any  $\epsilon > 0$ . Moreover, if  $\pi$  is strictly convex then the inequality becomes strict.

Proof. Denote

$$x = (x_1, x_2, x_3, ..., x_n)$$
  
 $y = (x_1 + \epsilon, x_2 - \epsilon, x_3, ..., x_n)$   
 $z = (x_1 - \epsilon, x_2 + \epsilon, x_3, ..., x_n)$   
 $v = (1, -1, 0, ..., 0).$ 

Then  $y=x+\epsilon v$  and  $z=x-(\epsilon+x_1-x_2)v$ . Consequently, x is a nontrivial convex combination of the points y, z. The assertion of Lemma 1 follows from the convexity (resp. strict convexity) of  $\pi$  and from  $\pi(y)=\pi(z)>0$ .

LEMMA 2. Let  $\pi$  be a symmetric monotone norm on  $\mathbb{R}^n$ ,  $x, y \in \mathbb{R}^n$ ,  $|x| \leq |y|$  and  $||x||_{\infty} < ||y||_{\infty}$ . Then  $\pi(x) < \pi(y)$ .

*Proof.* Suppose  $x \neq 0$  (for x = 0 the assertion is trivial).

(a) At first, let us prove Lemma 2 for

$$x = (x_1, x_2, x_3, ..., x_n) \ge 0$$
  
$$y = (y_1, x_2, x_3, ..., x_n)$$
  
$$y_1 > x_1 = ||x||_{\infty}.$$

It is possible to assume that  $x_i > 0$  for each i = 1,...,n (for otherwise we can forget about the coordinates with  $x_i = 0$  and solve the problem in a space of smaller dimension). Choose  $\epsilon > 0$  and  $\delta > 0$  so small that

$$(1+\delta)(x_1+(n-1)\epsilon) \leqslant y_1$$
 and  $0 \leqslant (1+\delta)(x_i-\epsilon) \leqslant x_i$  for  $i=2,...,n$ .

Using n-1 times Lemma 1 (for the first and i-th coordinates, i=2,...,n) and

the monotonicity of  $\pi$  we get

$$\pi(x_1, x_2, ..., x_n) \leq \pi(x_1 + (n-1)\epsilon, x_2 - \epsilon, ..., x_n - \epsilon)$$

$$< (1+\delta)\pi(x_1 + (n-1)\epsilon, x_2 - \epsilon, ..., x_n - \epsilon)$$

$$\leq \pi(y_1, x_2, ..., x_n).$$

(b) We are ready to prove the general case. It is possible to assume that  $||y||_{\infty} = |y_1|$ . The assertion follows easily from (a):

$$\pi(x) \leqslant \pi(\|x\|_{\infty}, |x_2|, ..., |x_n|) < \pi(\|y\|_{\infty}, |x_2|, ..., |x_n|)$$

$$\leqslant \pi(|y_1|, |y_2|, ..., |y_n|) = \pi(y). \quad \blacksquare$$

Let us define generalized radius and center of finite sets. For the first time this definition appears in [2] by R. Durier. It is easy to see that if  $\pi$  is the  $\ell_{\omega}$ — or  $\ell_1$ —norm on  $\mathbb{R}^n$  then  $\pi$ —centers are simply the Chebyshev centers or medians, respectively.

DEFINITION. Let  $\pi$  be a norm on  $\mathbb{R}^n$ . For a subset  $A = \{a_1, ..., a_n\}$  of a normed linear space X, the number

$$r_{\pi}(A) := \inf_{x \in X} \pi(\|x - a_1\|, ..., \|x - a_n\|)$$

is called the  $\pi$ -radius of A. Any point  $x_0 \in X$  with  $\pi(\|x_0 - a_1\|, ..., \|x_0 - a_n\|) = r_{\pi}(A)$  is called a  $\pi$ -center of A.

We shall consider norms  $\pi$  on  $\mathbb{R}^3$  and three-point sets A only. The following simple lemma about  $\pi$ -centers of a concrete three-point set in the plane (equipped with the max-norm) describes a situation which we are going to "imitate" in the proof of our main result.

LEMMA 3. Let  $\pi$  be a symmetric monotone norm on  $\mathbb{R}^3$ . If (x,0) is a  $\pi$ -center of the set

$$A_0 = \left\{ (0,1), (0,-1), (\frac{3}{2},0) \right\}$$

in  $(\mathbb{R}^2, \|.\|_{\infty})$  then  $\frac{1}{2} \leqslant x \leqslant 1$ .

Proof. Denote

$$f(x) := \pi(\|(x,0) - (0,1)\|_{\infty}, \|(x,0) - (0,-1)\|_{\infty}, \|(x,0) - (\frac{3}{2},0)\|_{\infty})$$

$$= \pi(\max\{|x|,1\},\max\{|x|,1\},|x-\frac{3}{2}|).$$

If  $x < \frac{1}{2}$  then  $|x - \frac{3}{2}| > 1$ . Lemma 2 implies

$$f(\frac{1}{2}) = \pi(1,1,1) < \pi(1,1,|x-\frac{3}{2}|) \le f(x).$$

So (x,0) cannot be a  $\pi$ -center of  $A_0$ .

If x>1 we can write  $x=1+\epsilon$  where  $\epsilon>0$ . By Lemma 2 and Lemma 1 we obtain

$$f(1) = \pi(1, 1, \frac{1}{2}) < \pi(1 + \epsilon, 1, \frac{1}{2}) \leq \pi(1 + \epsilon, 1 + \epsilon, \frac{1}{2} - \epsilon) = f(x) .$$

Neither in this case (x,0) is a  $\pi$ -center of  $A_0$ .

It is easy to prove, using a weak-compactness argument, that for any monotone norm  $\pi$  the  $\pi$ -centers always exist in reflexive Banach spaces. The main result of this paper concerns the opposite implication: given a symmetric monotone norm  $\pi$ , the existence of  $\pi$ -centers of all three-point sets for every equivalent renorming implies reflexivity. The main idea of the proof comes from [3] where a particular case (Chebyshev centers) was proved.

THEOREM. Let X be a nonreflexive Banach space. There exists a three-point set  $A \subset X$  with the following property: for each symmetric monotone norm  $\pi$  on  $\mathbb{R}^3$  there exists an equivalent norm  $\|\cdot\|$  on X such that A has no  $\pi$ -center in  $(X,\|\cdot\|)$ .

*Proof.* Choose a closed subspace Y of codimension one in X, and a point  $x_1 \in X \setminus Y$ . Since Y is nonreflexive, by the James theorem there exists a norm—one functional  $y^* \in Y^*$  that does not attain its maximum value on the unit ball of Y. Choose  $y_1 \in Y$  with  $y^*(y_1) = 1$  and define

$$A = \left\{ x_1, -x_1, \frac{3}{2}y_1 \right\}.$$

Let  $\pi$  be a symmetric monotone norm on  $\mathbb{R}^3$ . We shall define an equivalent norm  $\|\cdot\|$  on X with which no  $\pi$ -center of A exists.

Let  $A_0 \subset (\mathbb{R}^2, \|.\|_{\infty})$  be as in Lemma 3. Denote

$$\lambda = \min \{x \in \mathbb{R} \mid (x,0) \text{ is a } \pi\text{-center of } A_0\}.$$

(Of course  $A_0$  must have a  $\pi$ -center of the form (x,0) by symmetry: the set of its  $\pi$ -centers is nonempty, convex and symmetric with respect to the x-axis.)

Lemma 3 implies  $1/2 \le \lambda \le 1$ . Let  $\alpha > 0$  be so small that

$$\alpha \left[ \lambda + \frac{3}{2} \|y_1\| \right] \leqslant \frac{3}{2} - \lambda$$

where  $\|.\|$  is the original norm on X. Consequently the number

$$\beta = 1 - \alpha \lambda$$

is positive since  $\beta \ge (3/2) - \lambda - \alpha \lambda \ge \alpha(3/2) \|y_1\|$ .

Let us define an equivalent norm on X by the formula

$$||y + tx_1|| = \max\{\alpha||y|| + \beta|t|, |y^*(y)|, |t|\}.$$

Put

$$F(x) = \pi(|||x - x_1|||, |||x + x_1|||, |||x - \frac{3}{2}y_1|||).$$

For  $y \in Y$ , we have

$$F(y) = \pi(\max\{\alpha ||y|| + \beta, |y^*(y)|, 1\}, \max\{\alpha ||y|| + \beta, |y^*(y)|, 1\},$$
$$\max\{\alpha ||y - \frac{3}{2}y_1||, |y^*(y) - \frac{3}{2}|\}).$$

Let f be as in Lemma 3, i.e.  $f(\xi) = \pi(\max\{|\xi|, 1\}, \max\{|\xi|, 1\}, |\xi - 3/2|)$ , and  $(\xi, 0)$  is a  $\pi$ -center of  $A_0$  iff f attains its minimum at  $\xi$ . For simplicity denote

$$R = r_{\pi}(A)$$
 and  $r = r_{\pi}(A_0)$ .

For any  $0 < \epsilon < \lambda$  choose  $y_{\epsilon} \in Y$  such that  $\|y_{\epsilon}\| = \lambda$  and  $y^*(y_{\epsilon}) = \lambda - \epsilon$ . Considering that  $\alpha \lambda + \beta = 1$  and  $\alpha \|y_{\epsilon} - 3/2y_1\| \leqslant \alpha(\lambda + 3/2\|y_1\|) < 3/2 - \lambda < 3/2 - \lambda + \epsilon$ , we can compute

$$\begin{split} F(y_{\epsilon}) &= \pi (\max\{\lambda - \epsilon, 1\}, \max\{\lambda - \epsilon, 1\}, \max\{\alpha \| y_{\epsilon} - 3/2y_{1} \|, 3/2 - \lambda + \epsilon\}) \\ &\leqslant \pi (\max\{\lambda, 1\}, \max\{\lambda, 1\}, 3/2 - \lambda + \epsilon) \\ &\leqslant \pi (\max\{\lambda, 1\}, \max\{\lambda, 1\}, 3/2 - \lambda) + \epsilon \pi(0, 0, 1) \\ &= f(\lambda) + \epsilon \pi(0, 0, 1) = r + \epsilon \pi(0, 0, 1). \end{split}$$

Then  $R \leqslant r$  since  $\epsilon$  can be taken arbitrary small.

The monotonicity and symmetry of  $\pi$  easily imply that the function F is convex and satisfies  $F(y+tx_1)=F(y-tx_1)$  for all  $y\in Y$ ,  $t\in\mathbb{R}$ . Consequently it suffices to compute the  $\pi$ -radius of A as the greatest lower bound of F(Y), and to prove that A has no  $\pi$ -center in Y. Suppose on the contrary that a point  $y\in Y$  is a  $\pi$ -center of A. Then

$$r \geqslant R = F(y) \geqslant \pi(\max\{|y^*(y)|,1\}, \max\{|y^*(y)|,1\}, |y^*(y) - \frac{3}{2}|) = f(y^*(y)) \geqslant r.$$

This implies that R = r and  $(y^*(y), 0)$  is a  $\pi$ -center of  $A_0$ . By Lemma 3

$$\frac{1}{2} \leqslant \lambda \leqslant y^*(y) \leqslant 1.$$

Hence

$$r \geqslant R = F(y) = \pi \left( \max \left\{ \alpha \|y\| + \beta, 1 \right\}, \max \left\{ \alpha \|y\| + \beta, 1 \right\}, \max \left\{ \alpha \|y - \frac{3}{2}y_1\|, \frac{3}{2} - y^*(y) \right\} \right)$$

$$\geqslant \pi(1,1,\frac{3}{2}-y^*(y))=f(y^*(y))=r.$$

Therefore the last inequality is in fact equality. Denoting  $\xi = \max\{\alpha ||y|| + \beta, 1\}$ ,  $\eta = \max\{\alpha ||y - 3/2y_1||, 3/2 - y^*(y)\}$  and  $\vartheta = 3/2 - y^*(y)$ , we have the following situation:

$$\pi(\xi, \xi, \eta) = \pi(1, 1, \vartheta)$$
 and  $(\xi, \xi, \eta) \geqslant (1, 1, \vartheta)$ .

Lemma 2 and the inequality  $\vartheta \leq 3/2 - 1/2 = 1$  imply

$$\alpha \|y\| + \beta \leqslant \xi \leqslant \|(\xi, \xi, \eta)\|_{\mathfrak{m}} = \|(1, 1, \vartheta)\|_{\mathfrak{m}} = 1.$$

But this implies  $\|y\| \le (1-\beta)/\alpha = \lambda$ , a contradiction with the fact that  $y^*(y) \ge \lambda$ ,  $\|y^*\| = 1$  and  $y^*$  does not attain its norm.

Our Theorem and the remark after Lemma 3 give the following characterizations of reflexivity. (The equivalence of (i), (ii) and (v) for  $\pi = \|.\|_{\varpi}$  follows also from [3].)

COROLLARY. Let  $\mathcal P$  be the set of all symmetric monotone norms on  $\mathbb R^3$ . Let a  $\pi_0 \in \mathcal P$  be given. Let X be a Banach space and  $\mathcal N$  be the set of all equivalent norms on X. Then the following assertions are equivalent.

- (i) X is reflexive.
- (ii) For each  $\nu \in \mathcal{N}$  every bounded  $B \subset X$  has a Chebyshev center in  $(X, \nu)$ .
- (iii) For each  $\nu \in \mathcal{N}$  every finite set  $F \subset X$  has a median in  $(X, \nu)$ .
- (iv) For each  $\nu \in \mathcal{N}$  and each  $\pi \in \mathcal{P}$  every three-point set  $A \subset X$  has a  $\pi$ -center in  $(X, \nu)$ .
- (v) For each  $\nu \in \mathcal{N}$  every three-point set  $A \subset X$  has a  $\pi_0$ -center in  $(X, \nu)$ .
- (vi) For each three-point set  $A \subset X$  there exists  $\pi \in \mathcal{P}$  such that A has a  $\pi$ -center in  $(X, \nu)$  whenever  $\nu \in \mathcal{N}$ .

Remark. Note that the proof of our Theorem gives a possibility to construct concrete examples of three-point sets with no  $\pi$ -center. For example, if  $\pi$  is the  $\ell_1$ -norm on  $\mathbb{R}^3$  and  $X=\ell_1$ , put  $Y=\{(\eta_1,\eta_2,\ldots)\in\ell_1\mid\eta_1=0\}$ ,  $y^*=(0,3/4,4/5,\ldots,(n+1)/(n+2),\ldots)\in\ell_{\varpi},\ y_1=(0,4/3,0,0,\ldots).$  It is easy to see that  $\lambda=1$  in this case, so the inequality  $\alpha(\lambda+3/2\|y_1\|)\leqslant 3/2-\lambda$  becomes  $\alpha(1+2)\leqslant 1/2$ ; thus we can take  $\alpha=1/6$ . Then  $\beta=5/6$ . By the proof of Theorem, the set

$$A = \{(1,0,0,...), (-1,0,0,...), (0,2,0,0,...)\}$$

has no median in  $(\ell_1, |||.|||)$  where

$$|\!|\!|\!| (\eta_1,\eta_2,\ldots)|\!|\!| = \max \Big\{ \tfrac{5}{6} \big|\, \eta_1 \big| \, + \, \tfrac{1}{6} \, \tfrac{\varpi}{n=2} \, \big|\, \eta_n \, \big|, \, \, \left| \tfrac{\varpi}{n=2} \, \tfrac{n+1}{n+2} \eta_n \, \right|, \, \, |\eta_1| \Big\}.$$

## REFERENCES

- BARONTI, M., CASINI, E., PAPINI, P.L., Equilateral sets and their central points, to appear in Rend. Mat. Appl.
- DURIER, R., A general framework for the one center location problem, in "Advances in Optimization", (W. Oettli, D. Pallaschke, Eds.), pp. 441-457, Lecture Notes in Economics and Math. Systems, Vol. 382, Springer-Verlag, 1992.
- KONYAGIN, S.V., A remark on renorming of nonreflexive spaces and the existence of a Chebyshev center, Vestnik Moskov. Univ. Ser. I Mat. Mekh. 2 (1988), 81-82 (Moscow Univ. Math. Bull. 43(2) (1988), 55-56).