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0. INTRODUCTION

R.M. Aron and R.H. Lohman introduced, in [1], the notion of A—property in
a normed space and calculated the A—function for some classical normed spaces.
In this paper we give some more general remarks on this A—property and compute
the A—function of other normed spaces namely: B(S,Z,X) and My(E).

If X is a normed space, the closed unit ball and the unit sphere will be
denoted by By and Sy respectively. The set of extreme points of By is denoted
by ext(By). Recall that X is strictly convex if ext(By)=_Sx. Let z€ By, if
eeext(By), [lyll <1,0< A1 and z= Ae+ (1 — A)y we say (cf. [1]) the ordered
triple (e, y, ) is amenable to z. In this case, we define (cf. [1])

Mz) =sup{A: (e,y,A)is amenable to z} .
Recall that X is said to have the A—property if each z€ By admits an amenable
triple. If X has the A—property and, in addition, satisfies inf{\(z): z€ By} >0,
we say X has the uniform A—property.

If T is a compact Hausdorff space, we denote by Cx(T) the normed space
of all continuous functions on T valued in X with the norm sup.

1. SOME RESULTS ON THE A-FUNCTION IN A NORMED SPACE

PROPOSITION 1.1. Let X be a normed space having the A—property (resp.
uniform A—property). Let Y be a normed space and let f: X — Y an isometric
isomorphism. Then Y has the A—property (resp. uniform A—property) and:

Ax(z) = Ayef(z), VzeBy;
where Ax (resp. Ay) is the A—function of X (resp. Y).
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Proof Easy. |1

LEMMA 1.2. Let X be a normed space having the A—property and let z € By.
IfM\(z) =1, then z€ ext(By).

Proof. 1f A(z) =1, then for each n € IN*, there exists a triple (e,,¥n,A%)

amenable to z such that 1 —1/n<A,<1. Then e, =z/A, + (1 = 1/X;)¥n-
Hence the sequence (e, ) converges to z. 1§

For the A—function of the space Cx(T) we have:

LEMMA 1.3. Let T be a compact Hausdorff space and let X be a normed
space. If Cx(T) has the A\—property, then we have:
/2(1 + m)A(2) < A(z) < Y2(1 + m),

where m=inf{||z(¢)]| : t€ T} and 2(t) = z(t)/||z(¢)| for all = in the closed unit
ball of Cx(T) such that z(t) #0 forallte T.

Proof. 1t is easy to see (cf. [1]) that A(z) < (1 + m)/2. The case m=1is
trivial, so we assume m < 1. Write z(t) = z(¢)/||z(¢)| and

2e(t)] -1 - m
) = (t)
= e

forall te T. We have ||y[| <1 and z=1/2(1 + m)z + 1/2(1 — m)y.
Given ¢ > 0, there is a triple (e,y’,A) that is amenable to z for wich
AM2z) — e < X. Letting X =1/5(1 + m)A and

_ QT+m)QA-N)y+(1-m)y
N 2 — (1+m)A

Then (e,y”,A’) is amenable to z. This shows A(z) > !/2(1 + m)(A(2) — €).
- Completing the proof. I

y//

Remark 1.4. Consequently, if X is a normed space having the A—property,
we have (see also [1]):

121+ el A(z/ll2l) < A=) < a1+ ll=l])  for all z€ By \{0}.
Since if T is a single set, there is an isometric isomorphism from Cy(T) onto X.

THEOREM 1.5. Let X be a normed space and T be a compact Hausdorff
space. Denote Y= Cx(T) and E={zeY:|z(¢)| =1 forallte T}. Assume that
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Y has the A—property. If AM(z)=1 for all € E and ext(By) is closed, then
ext(By)=E and Mz)=1/2(1+m) for all z€By; where as wusual
m=inf{||z(¢)] : te T}.

Proof. By the Lemma 1.4 of [1] we have ext(By)CE and by our

Lemma 1.2 we have Ecext(By). Using Lemma 1.3 we get A(z) = 1/2(1 + m) for
all z€ By .

COROLLARY. Let X be a normed space having the A—property. Then X is
strictly convez if and only if A(z) =1 for all z€Sx and ext(By) is closed.

2. COMPUTATION OF THE A-FUNCTION OF THE SPACE B(S,%, X)

2.1. Let S be an arbitrary set and let ¥ be an algebra of subsets of S. Let
X be a normed space. For z€ X and A€ X, we call the function s — x4(s)z a
X—characteristic function, where x, is the usual characteristic function of A.
The space B(S,X,X) consists of all uniform limits of finite sums of
X —characteristic functions. The norm in B(S,Z, X) is given by:

17l = sup {1 f(s)]| : s€S}.
We note that, if feB(S,Z,X) with inf{||f(s)]|: s€S} +0, then the
function s — f(s)/||f(s)|l is also in B(S,Z, X).
LEMMA 2.2. Let S be an arbitrary set and let X be a normed space. If e is an
extreme point of the closed unit ball of B(S,%, X), then |le(s)]| =1 for allseS.

Proof. Suppose there exists sg€S such that |e(so)|=a<1. Let
6=(1- a)/4 and set V={seS: |e(s)| <a+ 6}. Then sg€ V. Fix z¢ €Sy and
define u,v€ B(S, X, X) by:

u(s) = e(s) + bxy(s)z0, 9(s) = e(s) - xy(s)ao

Then e=1/y(u + v), contradicting the fact that e is an extreme point of the
closed unit ball of B(S,Z,X). |

Remark 2.3. If e€e B(S,L,X) and e(s) € ext(By) for all s€S, then e is an
extreme point of the closed unit ball of B(S,Z,X). Consequently, if X is a
strictly convex normed space, then the converse of Lemma 2.2 is true.

THEOREM 24. Let S be an arbitrary set and let X be a strictly convez
normed space. Then B(S,X,X) has the uniform M—property. In fact, if
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z€B(S,Z,X) and |z|| <1, then A(z)=1/2(1 + m), where m=inf{|z(s)|:
s€S}. Moreover, if m +0, then A(z) is attained.

Proof. One proceeds exactly as in the proof of Theorem 1.6 of [1], noting
that only the case in which m=0 needs to be modified. In this case, let
0< A< 1/y, choose § > 0 such that 46 <1 —2) and let W={seS: |z(s)| >26}.
Fix zg€ X, ||zo| =1, and define e: S— Sy by:

e(s) = (F()17()) x(3) + ()0 »
where f(s) = z(s) xy(s) + Xyc(8)zo and We=S\W.
Then e is an extreme point of the closed unit ball of B(S,Z,X). Define
y€B(S,Z,X) by y=(z— Ae)/(1 - A). Since (e,y,A) is amenable to z, and
0 < A < t/, is arbitrary, we have A(z) > /2. 1

Remark. If T is the algebra of all subsets of S, then B(S, X, X) is the space
of all bounded functions defined in S, valued in X.

3. COMPUTATION OF THE A-FUNCTION OF THE SPACE M (E)

Let E be an (infinite) locally compact space. A complex measure p€ M(E)
is called purely discontinuous, if there exists a countable subset F' of E such that
|&|(F€) = 0. The space of all such measure will be denoted by My(E).

For a€ E, let ¢, be the measure defined by ¢,(4) = x4(a) for all ACE. We
recall the following result (see [6], p. 270).

THEOREM 3.1. For {a,}._ o sequence of complez numbers such that
Yo |an| < o and {a, }:’zl a sequence of distinct points of E, we have:

(i) E7?:1(‘“11 €q, € Md(E) )

(ii) |2:=1 Qg ¢Ea.nl = 277;:1 Ianlean )
(iil) 2o, @n eyl = Bp; lan]

and every non zero measure in My(E) has a unique representation (i) in which all
o, ’s are mon zero (the sum may be finite).

The extreme points of By, where X = M4(E), are given by
PROPOSITION 3.2. ext(By)={o¢, : 0€C with |g| =1 and a€ E}.

Proof. Let v be a non zero measure in By and let V=2:=1 On€q, the
representation (i) of v. We assume that there exists an integer k£ >1 such that
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|ag| #1. Then one can write v = Ay + (1 — A)pp, where

-1
A=lag], pr=(ar/lag])es and po=%, _,a,(1 - |og]) € -
We have A€]0,1[, p1,0€ By and p; # 5. Then v¢ext(By). Conversely, it is
easy to see that ¢, €ext(By) forall acE. 1

Remark 3.3. The decomposition v = Ap; + (1 — A)puy given in the last
proof, shows that M;(E) has the A—property.

THEOREM 34. Let E be an infinite locally compact space (non countable).
Then Mg(E) has the X—property. In fact, if veMy(E) with |v| <1 and
M=sup{|v(t)|: teE}, then A(v)=1/2(1 - |v|+ 2M). Moreover, A(v) is
attained.

Proof Let veBy\{0}. We assume that vgext(By). Let (e=oe¢,,
p=3%"_ Bne,, ) a triple that is amenable to v=3"_ o€,

If ae{aj:j>1} and ag{b;:j5>1}, then v(a)= Ao and A= |v(a)|
sup{|v(t)| : t€ B} < Y21 — || + 2M).

If aef{aj:j>1} (1 {b;:5>1}, one can assume that ¢ = ay = b;. Then
we have a; = Ao + (1 — A)f; and there exists a bijection © from {2,3,... } onto
{2,3,...} such that

for n=2,3,.. .
apn = bg(n) ’

Qap = (1 - ’\)ﬂe(n):l
Hence
13 lull = 22, 18a] = lay = Aa| (1= N+ 22, la, |1 -0 =
- -1
= (vl = lea] + Ao = a1 )@ = A7 > (el = 2fes] + A)(A2 - A

Then A < 1/2(1 = [[v]l + 2|e1]) < Y/a2(1 = |v] + 2M).
If a¢{aj:j>1}, then a€{b;:j>1} and we can assume that a=b,.
Then we have Ao + (1 — A)f; =0 and

U ul = 182 + 5%, 1Ba] = Aol -2 +52 Jag|(1- N =
= () +2)@-n".

Hence A < Y/2(1 = |lvll) < /21 = |Ivll + 2M).

Conversely, let k>1 such that |ay| = |v(at)| =sup{|v(t)| : te T}. Let
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A=12(1—|v| +2M), e=apM7te, and p=1/5(1- )\)-1("11" -1e+
% pea(l- A)_lean. Wehave |u|=1and v=2de+ (1 — A)p. 1

Remark. Let {a,}, a sequence of distinct points of E and

v,=mn"1 2;'___1 €aj then A(v,) = n-1; this shows that the space My(E) has not the
uniform A—property.

® N > ok W
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