On the λ -Property and Computation of the λ -Function of some Normed Spaces

MOHAMED AKKOUCHI AND HASSAN SADIKY

Dpt. de Mathématiques, Fac. des Sciences-Semlalia, Univ. Cadi Ayyad Bd. du Prince My. Abdellah, B.P. S15 Marrakech, Maroc

AMS Subject Class. (1991): 46B20

Received May 24, 1993

0. Introduction

R.M. Aron and R.H. Lohman introduced, in [1], the notion of λ -property in a normed space and calculated the λ -function for some classical normed spaces. In this paper we give some more general remarks on this λ -property and compute the λ -function of other normed spaces namely: $B(S, \Sigma, X)$ and $M_d(E)$.

If X is a normed space, the closed unit ball and the unit sphere will be denoted by B_X and S_X respectively. The set of extreme points of B_X is denoted by $\text{ext}(B_X)$. Recall that X is strictly convex if $\text{ext}(B_X) = S_X$. Let $x \in B_X$, if $e \in \text{ext}(B_X)$, $||y|| \le 1$, $0 < \lambda \le 1$ and $x = \lambda e + (1 - \lambda)y$ we say (cf. [1]) the ordered triple (e, y, λ) is amenable to x. In this case, we define (cf. [1])

$$\lambda(x) = \sup \{\lambda : (e, y, \lambda) \text{ is amenable to } x\}.$$

Recall that X is said to have the λ -property if each $x \in B_X$ admits an amenable triple. If X has the λ -property and, in addition, satisfies $\inf\{\lambda(x): x \in B_X\} > 0$, we say X has the uniform λ -property.

If T is a compact Hausdorff space, we denote by $C_X(T)$ the normed space of all continuous functions on T valued in X with the norm sup.

1. Some Results on the λ -Function in a Normed Space

PROPOSITION 1.1. Let X be a normed space having the λ -property (resp. uniform λ -property). Let Y be a normed space and let $f: X \longrightarrow Y$ an isometric isomorphism. Then Y has the λ -property (resp. uniform λ -property) and:

$$\lambda_X(x) = \lambda_Y \circ f(x)$$
, $\forall x \in B_X$;

where λ_X (resp. λ_Y) is the λ -function of X (resp. Y).

Proof. Easy.

LEMMA 1.2. Let X be a normed space having the λ -property and let $x \in B_X$. If $\lambda(x) = 1$, then $x \in \overline{\text{ext}(B_X)}$.

Proof. If $\lambda(x) = 1$, then for each $n \in \mathbb{N}^*$, there exists a triple (e_n, y_n, λ_n) amenable to x such that $1 - 1/n < \lambda_n \le 1$. Then $e_n = x/\lambda_n + (1 - 1/\lambda_n)y_n$. Hence the sequence (e_n) converges to x.

For the λ -function of the space $C_X(T)$ we have:

LEMMA 1.3. Let T be a compact Hausdorff space and let X be a normed space. If $C_X(T)$ has the λ -property, then we have:

$$1/2(1+m)\lambda(z) \leq \lambda(x) \leq 1/2(1+m)$$

where $m = \inf\{\|x(t)\| : t \in T\}$ and $z(t) = x(t)/\|x(t)\|$ for all x in the closed unit ball of $C_X(T)$ such that $x(t) \neq 0$ for all $t \in T$.

Proof. It is easy to see (cf. [1]) that $\lambda(x) \le (1+m)/2$. The case m=1 is trivial, so we assume m<1. Write $z(t)=x(t)/\|x(t)\|$ and

$$y(t) = \frac{2||x(t)|| - 1 - m}{(1 - m)||x(t)||} x(t)$$

for all $t \in T$. We have $||y|| \le 1$ and x = 1/2(1+m)z + 1/2(1-m)y.

Given $\epsilon > 0$, there is a triple (e, y', λ) that is amenable to z for wich $\lambda(z) - \epsilon < \lambda$. Letting $\lambda' = 1/2(1+m)\lambda$ and

$$y'' = \frac{(1+m)(1-\lambda)y' + (1-m)y}{2-(1+m)\lambda}.$$

Then (e, y'', λ') is amenable to x. This shows $\lambda(x) > 1/2(1+m)(\lambda(z)-\epsilon)$. Completing the proof. \blacksquare

Remark 1.4. Consequently, if X is a normed space having the λ -property, we have (see also [1]):

$$^{1}/_{2}(1 + ||x||) \lambda(x/||x||) \le \lambda(x) \le ^{1}/_{2}(1 + ||x||)$$
 for all $x \in B_{X} \setminus \{0\}$.

Since if T is a single set, there is an isometric isomorphism from $C_X(T)$ onto X.

THEOREM 1.5. Let X be a normed space and T be a compact Hausdorff space. Denote $Y = C_X(T)$ and $E = \{x \in Y : ||x(t)|| = 1 \text{ for all } t \in T\}$. Assume that

Y has the λ -property. If $\lambda(x) = 1$ for all $x \in E$ and $\text{ext}(B_Y)$ is closed, then $\text{ext}(B_Y) = E$ and $\lambda(x) = \frac{1}{2}(1+m)$ for all $x \in B_Y$; where as usual $m = \inf\{\|x(t)\| : t \in T\}$.

Proof. By the Lemma 1.4 of [1] we have $\text{ext}(B_Y) \subset E$ and by our Lemma 1.2 we have $E \subset \overline{\text{ext}(B_Y)}$. Using Lemma 1.3 we get $\lambda(x) = 1/2(1+m)$ for all $x \in B_Y$.

COROLLARY. Let X be a normed space having the λ -property. Then X is strictly convex if and only if $\lambda(x) = 1$ for all $x \in S_X$ and $\text{ext}(B_X)$ is closed.

2. Computation of the λ -Function of the Space $B(S, \Sigma, X)$

2.1. Let S be an arbitrary set and let Σ be an algebra of subsets of S. Let X be a normed space. For $x \in X$ and $A \in \Sigma$, we call the function $s \longrightarrow \chi_A(s)x$ a X-characteristic function, where χ_A is the usual characteristic function of A. The space $B(S,\Sigma,X)$ consists of all uniform limits of finite sums of X-characteristic functions. The norm in $B(S,\Sigma,X)$ is given by:

$$||f|| = \sup \{ ||f(s)|| : s \in S \}.$$

We note that, if $f \in B(S, \Sigma, X)$ with $\inf\{\|f(s)\| : s \in S\} \neq 0$, then the function $s \mapsto f(s)/\|f(s)\|$ is also in $B(S, \Sigma, X)$.

LEMMA 2.2. Let S be an arbitrary set and let X be a normed space. If e is an extreme point of the closed unit ball of $B(S, \Sigma, X)$, then ||e(s)|| = 1 for all $s \in S$.

Proof. Suppose there exists $s_0 \in S$ such that $||e(s_0)|| = \alpha < 1$. Let $\delta = (1 - \alpha)/4$ and set $V = \{s \in S : ||e(s)|| \le \alpha + \delta\}$. Then $s_0 \in V$. Fix $x_0 \in S_X$ and define $u, v \in B(S, \Sigma, X)$ by:

$$u(s) = e(s) + \delta \chi_V(s) x_0, \quad v(s) = e(s) - \delta \chi_V(s) x_0.$$

Then e = 1/2(u+v), contradicting the fact that e is an extreme point of the closed unit ball of $B(S, \Sigma, X)$.

Remark 2.3. If $e \in B(S, \Sigma, X)$ and $e(s) \in \text{ext}(B_X)$ for all $s \in S$, then e is an extreme point of the closed unit ball of $B(S, \Sigma, X)$. Consequently, if X is a strictly convex normed space, then the converse of Lemma 2.2 is true.

THEOREM 2.4. Let S be an arbitrary set and let X be a strictly convex normed space. Then $B(S, \Sigma, X)$ has the uniform λ -property. In fact, if

 $x \in B(S, \Sigma, X)$ and $||x|| \le 1$, then $\lambda(x) = 1/2(1+m)$, where $m = \inf\{||x(s)|| : s \in S\}$. Moreover, if $m \ne 0$, then $\lambda(x)$ is attained.

Proof. One proceeds exactly as in the proof of Theorem 1.6 of [1], noting that only the case in which m=0 needs to be modified. In this case, let $0<\lambda<^1/2$, choose $\delta>0$ such that $4\delta<1-2\lambda$ and let $W=\{s\in S:\|x(s)\|\geqslant 2\delta\}$. Fix $x_0\in X$, $\|x_0\|=1$, and define $e\colon S\longrightarrow S_X$ by:

$$e(s) = (f(s)/||f(s)||)\chi_{W}(s) + \chi_{Wc}(s)x_{0}$$

where $f(s) = x(s) \chi_W(s) + \chi_{Wc}(s) x_0$ and $W^c = S \setminus W$.

Then e is an extreme point of the closed unit ball of $B(S,\Sigma,X)$. Define $y \in B(S,\Sigma,X)$ by $y=(x-\lambda e)/(1-\lambda)$. Since (e,y,λ) is amenable to x, and $0 < \lambda < 1/2$ is arbitrary, we have $\lambda(x) \geqslant 1/2$.

Remark. If Σ is the algebra of all subsets of S, then $B(S, \Sigma, X)$ is the space of all bounded functions defined in S, valued in X.

3. Computation of the λ -Function of the Space $M_d(E)$

Let E be an (infinite) locally compact space. A complex measure $\mu \in M(E)$ is called *purely discontinuous*, if there exists a countable subset F of E such that $|\mu|(F^c) = 0$. The space of all such measure will be denoted by $M_d(E)$.

For $a \in E$, let ϵ_a be the measure defined by $\epsilon_a(A) = \chi_A(a)$ for all $A \subset E$. We recall the following result (see [6], p. 270).

Theorem 3.1. For $\{\alpha_n\}_{n=1}^{\infty}$ a sequence of complex numbers such that $\Sigma_{n=1}^{\infty} |\alpha_n| < \infty$ and $\{a_n\}_{n=1}^{\infty}$ a sequence of distinct points of E, we have:

- (i) $\sum_{n=1}^{\infty} \alpha_n \, \epsilon_{a_n} \in M_d(E)$;
- (ii) $|\Sigma_{n=1}^{\infty} \alpha_n \epsilon_{a_n}| = \Sigma_{n=1}^{\infty} |\alpha_n| \epsilon_{a_n}$;
- (iii) $\|\Sigma_{n=1}^{\infty} \alpha_n \epsilon_{a_n}\| = \Sigma_{n=1}^{\infty} |\alpha_n|$

and every non zero measure in $M_d(E)$ has a unique representation (i) in which all α_n 's are non zero (the sum may be finite).

The extreme points of B_X , where $X = M_d(E)$, are given by

PROPOSITION 3.2. $\operatorname{ext}(B_X) = \{ \sigma \, \epsilon_a : \sigma \in \mathbb{C} \text{ with } |\sigma| = 1 \text{ and } a \in E \}.$

Proof. Let ν be a non zero measure in B_X and let $\nu = \sum_{n=1}^{\infty} \alpha_n \epsilon_{a_n}$ the representation (i) of ν . We assume that there exists an integer $k \ge 1$ such that

 $|\alpha_k| \neq 1$. Then one can write $\nu = \lambda \mu_1 + (1 - \lambda) \mu_2$, where

$$\lambda = |\alpha_k|$$
, $\mu_1 = (\alpha_k/|\alpha_k|) \epsilon_{ak}$ and $\mu_2 = \sum_{n \neq k} \alpha_n (1 - |\alpha_k|)^{-1} \epsilon_{an}$.

We have $\lambda \in]0,1[$, $\mu_1,\mu_2 \in B_X$ and $\mu_1 \neq \mu_2$. Then $\nu \notin \text{ext}(B_X)$. Conversely, it is easy to see that $\epsilon_a \in \text{ext}(B_X)$ for all $a \in E$.

Remark 3.3. The decomposition $\nu = \lambda \mu_1 + (1 - \lambda)\mu_2$ given in the last proof, shows that $M_d(E)$ has the λ -property.

THEOREM 3.4. Let E be an infinite locally compact space (non countable). Then $M_d(E)$ has the λ -property. In fact, if $\nu \in M_d(E)$ with $\|\nu\| \leq 1$ and $M = \sup\{|\nu(t)| : t \in E\}$, then $\lambda(\nu) = 1/2(1 - \|\nu\| + 2M)$. Moreover, $\lambda(\nu)$ is attained.

Proof. Let $\nu \in B_X \setminus \{0\}$. We assume that $\nu \not\in \operatorname{ext}(B_X)$. Let $(e = \sigma \epsilon_a, \mu = \sum_{n=1}^{\infty} \beta_n \epsilon_{b_n}, \lambda)$ a triple that is amenable to $\nu = \sum_{n=1}^{\infty} \alpha_n \epsilon_{a_n}$.

If $a \in \{a_j : j \ge 1\}$ and $a \notin \{b_j : j \ge 1\}$, then $\nu(a) = \lambda \sigma$ and $\lambda = |\nu(a)| \le \sup\{|\nu(t)| : t \in E\} \le \frac{1}{2}(1 - ||\nu|| + 2M)$.

If $a \in \{a_j : j \ge 1\} \cap \{b_j : j \ge 1\}$, one can assume that $a = a_1 = b_1$. Then we have $\alpha_1 = \lambda \sigma + (1 - \lambda)\beta_1$ and there exists a bijection Θ from $\{2, 3, \dots\}$ onto $\{2, 3, \dots\}$ such that

$$\left. \begin{array}{l} \alpha_n = (1 - \lambda)\beta_{\Theta(n)} \\ a_n = b_{\Theta(n)} \end{array} \right\}$$
 for $n = 2, 3, \dots$

Hence

$$1 \geqslant \|\mu\| = \sum_{n=1}^{\infty} |\beta_n| = |\alpha_1 - \lambda \sigma| (1 - \lambda)^{-1} + \sum_{n=2}^{\infty} |\alpha_n| (1 - \lambda)^{-1} =$$

$$= (\|\nu\| - |\alpha_1| + |\lambda \sigma - \alpha_1|) (1 - \lambda)^{-1} \geqslant (\|\nu\| - 2|\alpha_1| + \lambda) (1 - \lambda)^{-1}.$$

Then $\lambda \leq 1/2(1 - ||\nu|| + 2|\alpha_1|) \leq 1/2(1 - ||\nu|| + 2M)$.

If $a \notin \{a_j : j \ge 1\}$, then $a \in \{b_j : j \ge 1\}$ and we can assume that $a = b_1$. Then we have $\lambda \sigma + (1 - \lambda)\beta_1 = 0$ and

$$1 \geqslant \|\mu\| = |\beta_1| + \sum_{n=2}^{\infty} |\beta_n| = |\lambda \sigma| (1 - \lambda)^{-1} + \sum_{n=1}^{\infty} |\alpha_n| (1 - \lambda)^{-1} =$$
$$= (\|\nu\| + \lambda) (1 - \lambda)^{-1}.$$

Hence $\lambda \leq 1/2(1-\|\nu\|) \leq 1/2(1-\|\nu\|+2M)$.

Conversely, let $k \ge 1$ such that $|\alpha_k| = |\nu(a_k)| = \sup\{|\nu(t)| : t \in T\}$. Let

Remark. Let $\{a_n\}_{n=1}^{\infty}$ a sequence of distinct points of E and $\nu_n=n^{-1}\sum_{j=1}^n\epsilon_{a_j}$ then $\lambda(\nu_n)=n^{-1}$; this shows that the space $M_d(E)$ has not the uniform λ -property.

REFERENCES

- 1. ARON, R.M. AND LOHMAN R.H., A geometric function determined by extreme points of the unit ball of a normed space, *Pacific J. Math.* 127(2) (1987), 209-231.
- BENYAMINI, Y. AND STERNFELD, Y., Spheres in infinitedimensional normed spaces are Lipschitz contractible, Proc. Amer. Math. Soc. 88 (1983), 439-445.
- 3. BLUMENTHAL, R.M., LINDESTRAUSS, J. AND PHELPS, R.R., Extreme operators into C(K), Pacific J. Math. 15 (1965), 747-756.
- 4. DUGUNDJI, J., An extension of Tietze's theorem, Pacific J. Math. 1 (1951), 353-367.
- DUNFORD, N AND SCHWARTZ, J.T., "Linear Operators. Part I: General Theory", Interscience Publishers, Inc., New York, 1958.
- HEWITT, E. AND ROSS, K.A., "Abstract Harmonic Analysis. Volume I", Springer-Verlag, 1979.
- 7. PHELPS, R.R., "Lectures on Choquet's Theorem", Van Nostrand Math. Studies # 7, 1966, Princeton.
- 8. PHELPS, R.R., Extreme points in function algebras, Duke Math. J. 32 (1965), 267-278.