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0. INTRODUCTION

A rational cubic function, to produce a spline with shape control, was
described and anlysed in [17]. It provides a C? computationally simpler
alternative to the exponential spline—under—tension [1, 10, 13, 18]. Regarding
shape characteristics, it has two shape control parameters associated with each
interval which can be used to change the shape of the curve, both locally and
globally, in a variety of ways. This rational spline scheme and other similar
schemes like GC? Nielson’s scheme [4], in general, do not preserve the shape of
the given data. To achieve the shape preservation characteristics, the user needed
to play with the shape parameters on distinct areas of the curves which, of course,
is not a convenient job. In the last decade the problem of shape preserving
interpolation has been considered by a number of authors. For example,
monotonicity and/or convexity preserving scalar and parametric curves have been
discussed in [2, 3, 5, 8,9, 11, 12]. Their authors use rational quadratic/cubic/
rational cubic functions in the theory. For brevity, the reader is being refered to
[6, 7, 14, 15, 16] for some other shape preserving schemes.

Being an important problem of the Scientists, it is useful to use the C*
interpolation in [17] and develop a scheme so that the shape of the data is
preserved. This paper is meant to give the parametric description of the shape
preserving curves and begins with some preliminaries about the rational cubic
interpolant. The shape parameters in the description of the interpolant are
utilized and bounds are constructed on them, to produce pleasing graphical
results, in Section 2. These bounds are dependent on the given data. The
description of the tangent vectors, which are consistent and dependent on the
given data, is also made in Section 2.
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1. C! PIECEWISE RATIONAL CUBIC HERMITE INTERPOLANT

A piecewise rational cubic Hermite parametric function Pe C![tg,t,], with
parameters v;,w;, 1=0,...,n—1, is defined for t€ [¢;,¢;,1],1=0,...,n—1, by

P(t) = Pi(t;v,w;) =
(- 0)3F; 1 +0(1—0)2(v; F; + h; D;) + 02(1— 0) (w; F;,; —h; D;,p) + 03F;
(1-0)3+v;0(1-0)2+ w;02(1-6) + 63

(1)

where the notations F; and D,-GIRN are, respectively, the data values and the
first derivative values at the knots ¢;, i=0,...,n with {g<{;<,..., <{,,
hi=t;—t;q, 0=(t—t;_1)/h; and v;,w; >0.
The function P(t¢) has the Hermite interpolation properties that
P(t;)=F, and PY(t;)=D;,, i=0,...,n. (2)
The v; and w;, i=0,...,n—1, will be used so that the shape of the data is
preserved. The case v;=w;=3, 1=0,...,n—1, is that of cubic Hermite

interpolation and the restriction v;,w; >0 ensures a positive denominator in (1).
For v;,w; #+0, (1) can be written in the form

Pi(t;vi,w;) =
= Ro(0;v;,w;)F;_1 + Ry (0;v;,w;) Vi + Ra(0;v;,w;) W; + R3(0;v;,w;)F;, (3)

where
Vi=F + hiDiyfv;, W;=F; - h;D;/uw;, (4)
and R;(0;v;,w;), j=0,1,2,3, are appropriately defined rational functions with
3
Z].:ORJ(o)vuwz): 1. (5)

Moreover, these functions are rational Bernstein—Bézier weight functions which
are non—negative for v;,w; > 0. Thus in RV, N> 1 and for v;,w; > 0, we have:

PROPOSITION 1. (Convez hull property) The curve segment P; lies in the
convez hull of the control points {F;_y, V;, W;, F;}.
It is well known that rational Bézier curves enjoy the variation diminishing

property:

PROPOSITION 2. (Variation diminishing property) The curve segment P;
crosses any (hyper) plane of dimension N—1 no more times than it crosses the
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control polygon joining F; ,, V;, W;, F;.

A proof of Proposition 2 can be found in [17].

2. DERIVATIVE APPROXIMATIONS AND THE SHAPE CONSTRAINTS

In order to construct C! shape preserving rational cubic interpolation curve
P(t) dfined by (3) the first thing is to determine the tangent vectors Dj,
i=0,...,n, at interpolating points, then constraints on the shape parameters will
be imposed appropriately. Let

F; = (Z,- » Yi )
D; = (D, D!) (©)
A;= (Af ’A,!',) )
where
A= (z; - zi-l)/h’i » A= (yi- yi-l)/hi : (7)
Let

,31,1' = A: A?ﬂ - A? A?ﬂ
Boi=DiAY - DAY (8)
B3 = Af Df’ﬂ - A? Dizﬂ
ﬁ4,i= Diz Diy+1 - D}' Diz+1
Let A; = (F; — F;_1)/h;, i=1,...,n, then the tangent vectors D;’s at t;’s will
be defined as:

D;=ao; A+ 6;0;4, @;,6;,>0,1i=1,....n—-1, (9)

where a; =0 if and only if F;, F;,,,F;,o are collinear and f; =0 if and only if
F; _,,F;_, F; are collinear. The o;’s and f;’s are defined as follows:
For an open curve define

o; = |ﬂ1,i+2|/('ﬂ1,i| + |B1,is2l) and Bi=1-0;, i=2,...,n-2. (10)

The tangent vectors Dy,D;,D,_; and D, can by determined by the formulae
given in [6].

For a closed curve, F;'s are considered cyclic, i.e., F;,, = F;, for all 4. Thus
formulae (10) are extended for i=0,...,n.

Now we come to the constraints on the shape parameters. It was shown in
[17] that these shape parameters control the curve in different ways provided the
derivatives are bounded. Our problem is now to seek for appropriate minimal
bounds on w;’s and w;’s so that the resultant curve preserves the shape
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of the data.

If the control polygon joining F;_,, F;_;, F;,F;,; is convex, then so is the
curve segment (1). In case the control polygon joining F;_,,F;_;,F;, F;,; is not
convex, then the curve segment (1) will also be not convex and it will have only
one inflection point but not any singular point or any extra inflection point. If
F; 5,F;_; and F; (or F;_;,F; and F;,;) are collinear, then the curve segment (1)
degenerates into a linear segment.

Consider the equation

A;=6;D;; + B;D;. (11)

It can be solved for d;’s and B,’s, if we are given curve segment (1). Obviously
there are following four possible cases:

CAsEl. If d,ﬂi is positive, then their solution determines the contraints
on shape parameters as follows:

vi>ﬂ4,i/ﬂz,i ) wi>ﬂ4,i/ﬂ3,i- (12)

CASE 2. If diﬁi is negative, then solution will be determined by replacing
D;_; by 13,~ -1, Where Iji_l is the reflection in the line containing F;_; and F;.
The constraints on shape parameters are then obtained as follows:

v; = ﬁ4,i/ﬁ2,i y Wi= ﬂ4,i/ﬂ3,i : (13)
CASE 3. If d,-ﬁi vanishes, then the constraints are v; =3 = w;.

CASE 4. Fourth possiblity is, obviously, that there is no solution for a; and
ﬁi. This happens when the tangent vectors D;_; and D; are collinear. The curve
segment (1) will have only one inflection provided these derivatives are in the
same direction and hence the user can utilize the values in (13). In case of
opposite direction but same absolute value, the values v; = 1 = w; will produce a
conic segment.

3. SOME REMARKS

This section is devoted for some very important remarks about the theory
developed in Section 2. These remarks are as follows:

Remark 1. In the formulae (12) and (13), the shape parameters v;, w; have
been determined by looking at the components 81 ;, B2, 83, B4,i, of the vector
products A; x A;,q, D; x A;, A; x D;,,, D; x D;,; respectively. It should be
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noted that the signs of these vector quantities are significant for the shape
construction of the picture which has been explained above.

Remark 2. The restriction v; = w; = r; (say), in Case 1 above, recovers the
convexity preserving method of Sarfraz in [14] as the constraints

T >max{ﬂ4,i/ﬁz,i ; ﬂ4,i/ﬁ3,i} , (14)
which are similar to those in [14], can be obtaind from (12).

Remark 3. The scheme can also be considered for the data when it arises
from a function, i.e., for the scalar case. The restriciton v; = w; = r; (say) is also
required in this case and it can be considered as an application of interpolation
scheme (t,p(t)) in R? to the values (t;,F;) € R? and derivatives (1,D;) € R?,
i=0,...,n. It can also be noted that A;=(1,4;). Therefore the convexity
constraints (12), in this case, are respectively
Diy -D; Dy - Di}

)
A; = Dy Dy -4

T > max[ (15)
These constraints are same as in [3]. Hence the convexity preseving method of
Delbourgo and Gregory [3], for scalar curves can be obtained as a very special
case. Similarly, monotonicity of [3] can also be achieved as the special case of this
scheme. ‘

4. CONCLUSIONS AND SUGGESTIONS

C! rational cubic Hermite interpolant with two shape parameters has been
utilized to obtain a C' convexity and/or monotonicity preserving plane curve
method. Data dependent shape constraints are derived on the shape parameters to
assure the shape preservation of the data. Choice of the tangent vectors, which
are consistent and dependent on the data, has also been made. The shape
preserving scheme, in this paper, not only recovers the curve methods in [3,14],
but also gives alternative to the methods in [5,6,7,11].

The shape preserving scheme has also been looked at the aspect of producing
conic sections. The constraints for parabolic, hyperbolic and elliptic arcs can be
discovered as a subsequent work, which is under consideration of the author.
Moreover, circular arcs for this rational interpolation scheme can also be
investigated.
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