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0. INTRODUCTION

In their 1989 paper (1], L. Blum, M. Shub and S. Smale introduced a model
of computation and a theory of recursiveness that accepted an ordered field or
ring as alphabet for the space of admissible inputs: the real Turing machine
model. A special emphasis was made in the field of the real numbers, R. This
work also made an attempt, under the structural approach to complexity, at a
classification of the procedures developed in numerical analysis and a
computational geometry involving real numbers as inputs. In particular,
analogues of the P and NP classes were introduced there.

In [2] an algebro—geometric characterization of the complexity classes over
the reals and a deterministic time hierarchy is stated. The present note is a
continuation of the results in [2]. A non—deterministic time hierarchy, as the one
in the boolean case, is stated and as a consequence we conclude a feature which is
still open in the boolean case: there is a language accepted by a deterministic real
Turing machine is simply exponential time which can not be solved in polynomial
non—deterministic time.

1. GROUND TOOLS

Notations along these pages will follow essentially those introduced in [1].
By R® we shall denote the direct sum ®;.n[R, i.e. the set of all sequences of real
numbers with only finitely many non—zero coordinates. The size of an element
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XeR® is the non—negative integer |z| =n€N such that z,#0 is the last
non—zero coordinate of z. Also, in analogy with the Boolean case, we shall call
"language" any set included in R® and the language recognized by a Turing
machine M over R will be denoted by £(M). Moreover, languages recognized by
some machine will be called recursively enumerable (and denoted r.e. for short)
and r.e. language whose complement is also r.e. will be called recursive. For a
language L CR®, we shall denote by L, the set of words in L of size n€eN, i.e.
L,={zeL/|z| =n}. .

The running time Ry(z) of a machine M for zef(M) is the number of
nodes in M traversed by the computation of M on z until it reaches the output
node.

Using these notations, we can define the halting time function associated to
a machine M to be

Ty : N— NU {+00}
ni— sup{By(z) /a€L(M), |z] =n}
DEFINITION 1.1. For a total mapping s: N—— [N we define the complexity
class DTIMEgR(s) to be {L [there is a machine M, such that, L=L(M) and
Tu(n) € O(s)}.
DEFINITION 1.2. A machine M is said to be a time bounded computation
machine if Ty(n) <oo, for all nelN. We shall say that a language is time

bounded recursive (L € TB for short) iff L is recognized by a time bounded
computation machine.

DEFINITION 1.3. A semialgebraic set S is a subset of some finitely
dimensional real affine space, SCR® for n<oo, such that there is a finite
polynomials f;; €R[X;,...,X;] and sign conditions ¢;;€{>0,=0, <0} such that
the following equality holds:

5=1) (0 (51, 20) B sign (f (3 20)) = 1)
]:

DEFINITION 1.4. (cf. [2]) A language L is said to be finitely presented if
there is a finitely generated field extension Q(S) of Q, such that for every nelN,
L, is a semialgebraic subset of R* defined over Q(5).

THEOREM 1.5. For any language L, L is in TB iff L is finitely presented.
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Proof. See[2]. 1
The following lemma is taken from [2].

LEMMA 1.6. Let M be a time bounded machine and L its accepted
language. Then, we have Ty(n)eQ(log,Bo(L,)), where Bo(L,) denotes the number
of connected components of L,.

2. NON—DETERMINISTIC TIME HIERARCHY

DEFINITION 2.1. For a time bound s:IN—— N, we define the class
NTIMER(s) of all those languages such that there is a real Turing machine M
accepting inputs from R®xR® and a constant K €N satisfying:

For every z€R®, z€L if and only if there is y €R® such that (z,y)eL(M),
and Ry(z,y) <K-s(|z])

Notice that the class of non—deterministic polynomial time over the reals is
NPg = | sen NTIMER (n¥).

DEFINITION 2.2. A total mapping s:IN— IN is said to be time
constructible if there is a machine M such that the mapping ¢y computed by M
restricted to IN coincides with s and, there is a constant K€R, K >0 such that
Ry(m)<K-s(m), for all excepting a finite number of elements m €N, where
Ry(m) denotes the running time of M on input meN.

The most common functions used as time bounds in complexity theory (as,
for instance, logé(n), nk or 2k with k€N fixed) are time constructible over the
reals.

THEOREM 2.3. Let t,t’:IN— IN be two time constructible bounds and
assume that t'€w(t). Then, DTIMER(t') contains a language which is not in
NTIMEg((t).

Proof. Let us consider the language L defined as the set of points z€R®,
such that z; +1izy is a 2¥("—th root of the unity in the complex plane. The
following machine

input(z)
n:=|z|
m:=t(n)

z:=(zy +izg) 2™
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if z=1 then ACCEPT
else REJECT
fi
accepts L in time O(t’(n)). In fact, the first asignements takes constant time,
and the following two can be done within time O(¢/(n)).
On the other hand, if L € NTIMEg(t), there will be a real Turing machine
M verifying the conditions of def 2.1. Observe that if (z,y) €£(M) and Ry(z,y)
<K-t(n) for some y€R®, there is a constant K; > K depending only on M such
that only the first Kj-t(n) coordinates of y are reached along the computation
on (z,y). This implies that if ,: RexRE1H™ __, je i5 the projection on the
first n coordinates, m, projects £(M)u.k,4(n) OntO Ly
Since ¢ is time constructible we acn design a new machine M; in the
following terms:
input(n,z,y)
m:=K; -1(|z])
if Ty (z,y) <m then ACCEPT iff M ACCEPTS (z,y)
else REJECT
fi
This machine M; verifies:

RM1(z;y) <Ki- t(IfIII) for all (z,y) E‘C(Ml)'
Wn(‘C(Ml)prt(n)) = ﬂ’n(ﬁ(Iu)rwl(l»t(n)) =L,.

As projections does not increase connected components we have

ﬂO(E(Ml)n#\’l-t(n)) >ﬂ0(Ln) =2t'(11,)

Finally, from lemma 1.6 we have

K't(") € Q(logZﬂO (L(M)mkl-t(n)))
which contradicts the hypothesis t’€ w(¢). 1
COROLLARY 2.4. For a pair of time bounds t,t’:N— IN wverifying the

previous conditions, the following diagram summarizes the hierarchies:
DTIMERg(t) c NTIMEg(t)

fl # fl
DTIMERg(t) c NTIMEg(t")
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The following statement is still open in the boolean case:

COROLLARY 2.5. Denoting by EXTIMER the class of languages accepted
deterministically in simply ezponential time we have

EXTIMEg # NPg.
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