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1. INTRODUCTION

Recently many authors have studied many operations, which preserve
convexity on the hyperspace of convex functions. Some of the operations, like the
epigraphic addition (infimal-convolution) and the right epigraphic scalar
multiplication, which correspond to sum of epigraphs and the scalar
multiplication of epigraphs (see [16], section 5). This research was motivated by
the basic role in optimization and in the study of variational problems. As is was
treated by Mazure [10], study of epigraphic sum of convex functions can be
interpreted in terms of the inverse addition of their subdifferentials, which are
monotone operators.

In this paper, we present an exposition of the inverse operations on the
hyperspace  (X) of monotone operators, which are the inverse sum and the
inverse scalar multiplication.

In order to help the reader to understand the basic ideas, the relevant
historical background is given in what follows.

In studying the parallel connection of two resistors in an electrical network,
Erickson was led to introduce a couple of dual operations called parallel addition.
In order to consider also the electrical connection of multiports, Anderson and
Duffin [1] extended these operations from the scalar case to the case in which the
operators are symmetric positive definite matrices. Fillmore and Williams [9)]
extended these operations to the class of bounded positive operators on a Hilbert
space. Anderson, Morly and Trapp [2] initiated the study of the parallel sum of
nonlinear subdifferentials of convex functions in Hilbert spaces. Passty [11]
considered the natural extension to nonlinear monotone operators. Recently, this
kind of operations were investigated by Seeger [17], who introduced the notion of
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inverse addition of order p for pairs of convex sets.

The paper is organized as follows. The first primary goal is to give some
algebraic properties between this two inverse operations. The intermediary
purpose is to shed some light on the maximality of the inverse operations of two
maximal monotone operators. In addition, we present here new conditions which
assure the graph—convergence of this inverse operations. This permits us to
extend some recent results of Attouch—Moudafi—Riahi [6] from Hilbert spaces to
more general reflexive one. This appears to be interesting also from an applied
viewpoint, by means of some examples.

2. PRELIMINARIES

In the sequel, we shall assume a certain familiarity with convex analysis for
which we shall follow basically [5,8,19].

Throughout this note, we shall denote by X a real reflexive Banach space
and X* denotes its topological dual space. We shall denote strong and weak
convergence by “——” and “—2- " respectively. The pairing between X and
X* will be denoted by <-,-> and both the norms in X and X* by ||-|| and |-||»

If A is a subset of XxX* and z isin X, we let A(z)={yeX*;(z,y)ed},
D(A)={zeX;A(z)+@} its domaine and R(A)=U{A(z);zeD(A)} its range.
The inverse mapping A-1 is defined by A-(y)={z€X;(z,y)eA}. Obviously, we
have D(A-1)=R(A) and (z,y)e 4 iff (y,z)e 4L

An operator A is called monotone if <yy—Yy;,z9—7;>>0 whenever
(ziyi) € A.

Such an operator is said to be maximal if it is not contained in any other
monotone operator A’ in XxX*,

As an example of maximal monotone operators, one can consider the
subdifferential A =0f of proper convex lower semicontinuous functions
fiX— RU{+o0} ie., Of(z)={yeX*;f(z)-f(uv)2<yz—u> VueX}. The
same holds true, as it was introduced by Rockafellar, for the subdifferential of
convex—concave saddle functions F:XxY— RU{-o00,+00} i.e., OF(z*y*)=
OF (-,y*)(a¥)xd(~ F (z*,)) (3*).

DEFINITION 2.1. Let A,B be two operators in 4 (X). Let AeR. The
inverse addition between A and B is the operator

(A8B)(z):=U{A(21)0B(g5); 2=z, +25)
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If we set Ap(z)=X* if =0 and Ag(z)= O otherwise, then Age A (X) and the
inverse scalar multiplication by X is given by

VoeX, (AoA)(z)=A(z/\) if A#0 and (AeA)(z)=A4((z) if A=0.

Summarizing the linear properties of this two inverse operations, we have
the following.

THEOREM 2.2. Let A,B and C be three operators in A (X). Let AucR,.
Then we have:

(1) (Aed)e(peB) € A (X).

(2) AeB=BeA and Ag@®B=B.

(3) (AeB)eaC=Ae(BeC) and Ao(poA)=(A-p)0A.

(4) (AeB)1=(A"14B1) and (AeAd)1=24"1.

(5) Xo(AeB)=(leA)e(\eB), 164 =4 and 004 = A,.

p times
(6) Ae---04 =poA.
(1) Ay=(AoJ)®A is ezactly the well known Yosida approzimation. Here J =
3(4]|-)|?) denotes the duality mapping of X.

The (designation) of these operations have not been chosen arbitrarily as it
could be seen in the property (4) above.

3. MAXIMALITY OF THE INVERSE OPERATIONS

THEOREM 3.1. Let A and B be two mazimal monotone operators in
X xX*. Let A\,u€R,. Suppose that zero is an absorbing point of R(A)—R(B):

1) Uo>o @(R(4)-R(B))=X*.
Then (A@A)®(u®B) is a mazimal monotone operator.
THEOREM 3.2. Suppose that X is a Hilbert space. Then
(2) Uaso @(R(A)—R(B))=Y is only a closed linear subspace of X*
implies that (A\@A)e(u®B) is mazimal.

Remarks 2.3. 1) The conditions (1) and (2) in Theorem 3.1 and 3.2 are
quite abstract, but it can be applied directly in many cases. For example if 0 ¢
int(R(A)~R(B)) (the interior) or 0€ri(R(4)—R(B)) (the relative interior),
see [13].

2) 1If one of these two monotone operators is locally bounded, one deduces
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(see [8,19]) that its range is the whole space X*. Hence (1) is satisfied, and
(AeA)e®(ueB) is a maximal.

3) We cannot delete the condition “zero is an absorbing point of R(A)—
R(B)” in Theorem 3.1. For instance, if X=R2% A (resp., B) is the
subdifferential of the support function on U (resp. V): oy(z*)=sup{<z*z>;
zeU}, A=doy and B=3doy with U={(u,v)eX;u?<v} and V=Rx{0}.

Then A and B are maximal monotone, but 4 ® B is strictly included in the
monotone operator {0}xR2, since (A-1+B-1)(0)={0}xR. Hence AeB is not
maximal. For the condition (1), Uysg @(R(A)—R(B))=Ugso a(U - V)=RxR, is
not a subspace of RZ. ’

4) The result of Theorem 3.1 does not hold for an arbitrary Banach space,
as the following example shows. If X is not reflexive, it follows from Jame’s
Theorem that there exists yp€ X* such that the norm | ygl+=sup{<yo,z>;
|z|<1} doesn’t attein its supremum. Let A =4(||-]) and B=8(<yg,->2). Then
A and B are maximal monotone, R(A)=B*={yeX*;|yl+<1} and R(B)=
Ryo={aye; 2 €R}.

It follows that Ugyoa(R(A)—R(B))=X* However the monotone
operator A ®B =(B-1/B*)-1 is strictly included in B. So that the assumption (1)
is satisfied, but 4 @ B is not maximal.

4. GRAPH CONVERGENCE OF THE INVERSE OPERATIONS

Let us now examine how the perturbations of the above inverse operations
can be stable. That’s find a type for which when the monotone operators and
scalars converge, the inverse sum and scalar product converge too. This provide
flexible tools we give in what follow.

DEFINITION 4.1. 1) Let (A4,) be a sequence of maximal monotone
operators. We say that A, graph—converge to an operator A iff for every
(z,y)€ A, there exists (z,,y,)€ 4, such that z,—> z and y,—> v.

From monotonicity of the operators A,, this graph—convergence can be
formulated as the Kuratowski—Painlevé convergence of 4, to 4.

2) (Uniform Brezis—Crandall-Pazy condition) Let X be a reflexive
Banach space and X* its dual space. For (4,,B,) a couple of maximal monotone
operators in X xX*, let u} the unique solution of the inclusion

¥ eJuy + Apuy +(By)\ux.
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Indeed, this follows from the maximality of the operator A,+(B,)x
(see [19], Chap. 32).

' We shall say that (4,,B,) satisfy the uniform Brezis—Crandall-Pazy

condition (or uniforme BCP condition) iff for every z* € X*

lim sup, ., an(z*) <+00 Where ay(2*)=supasoll(Ba)x(ui)l-
We recommend [5,6,8,14,19] for more details concerning the main luggage
and results used in this note.
Let us now consider some recent results, whose proofs are in [14, Chap. 7],

which characterize the graph—convergence of the usual Minkowski sum of
maximal operators:

THEOREM 4.2. Consider (A,) and (B,) two sequences of mazimal
monotone operators which graph—converge to operators A and B. Then for every
A>0, (Ap+(By)n) graph—converges to (A + By).

THEOREM 4.3. Consider (A4,) and (B,) two sequences of mazimal
monotone operators in X xX* which graph—converge to operators A and B.
Suppose the uniform Brezis—Crandall—Pazy condition is satisfied by (An,By).
Then (A,+B,) graph—converges to (A + B).

THEOREM 4.4. Under the assumptions of Theorem 4.2. Suppose the
uniform Brezis— Crandall- Pazy condition is satisfied by (A, I,B;I).

Then (A, ®B,) graph—converges to (AeB).

We refer to [6] for the case of Hilbert spaces, when the graph—convergence is
replaced with the bounded Hausdorff convergence.

5. APPLICATION

Various examples coming from optimization problem can be combined. In
the end of this note we focuss our attention on approximate problems. Given A
and B two operators, and €>0 a small parameter (intended to go to zero), we
consider the following approximate problems:

(29 find 27 € X such that (A,®B,)(z%)nB, +@.
(£0) find 7y € X such that 0€ (AeB)(zy).

Let us consider z, a solution to the problem (E’Zn), and let
Yn € (4@ By)(25) such that |y[|<ep.
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Suppose that the uniform BCP condition is satisfied by (A,:1 ,B;l), that
(A,) and (B,) graph—converge to A and B. Using Theorem 4.4 it follows that
(A,®B,) graph—converge to (A @B).

Suppose now that the sequence (z,) is bounded and that €, converges to
zero. Then we can without loss of generality suppose that z,— 7, and y,— 0.
Passing to the limit we get 0€(4 ® B)(zy); which implies that z, is a solution to
the problem (2 ).

One can summarize this property in the following Theorem.

THEOREM 5.1.  Under the assumptions of Theorem 4.4. Let us assume that
for every integer n, there ecists €,>0 and a solution z, to (Pe,). Then every
w—limit point 1y of the sequence (z,), let T,m)— Tg, 18 a solution to the
problem (2 ).
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