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INTRODUCTION

Let C be a subset of a metric space. We shall say that C is a convex body if
it is a compact convex set with a non-empty interior.

In R™ with the norm induced by the usual scalar ptoduct, there are some
estimators, not necessarily a metric, of “the distance ” between convex bodies. In
what follows d shall be one of those estimator functions.

Forn=m+1,m+2,... let P, be the set of all convex polytopes having at
most n vertices. Given a convex body C we define 'P,,i(C) to be the set of poly—
topes of P, contained in C and let similarly 7,°(C) denote the set of polytopes of
P, containing C. We shall write P,’, ?,° instead of 7,*(C),7,°(C).

Let §: N— R the function defined by §(n) = inf{d(C,P): PeP,(C)},
where C is a fixed convex body. In the same way shall be defined the functions
§%(n) and 6°(n), when P € P,°(C), P,'(C) respectively. When referring to the
three functions at one time, they will be called §(n).

Given C and P, two arbitrary convex bodies, let us‘ define the functions:
p1(C,P) =sup,ecinfyep |z-y| and  pp(C,P)=p(P,C).

If it is clear which are the convex bodies we réfer to, we shall denote these
functions as p; and p,

Some classical theorems of Dowker [1] about packing and covering problems
promoted the study of the convexity of this type of functions.

Eggleston in [2], while working on those topics, constructed a convex body
C in R? for which the §(n) functions, when d(C,P) = §2(C,P) = p; + py, are
not convex. On the other hand Gruber [3] leaves it open the question of whether
or not the §(n) functions are convex, when d(C,P) = JH(C, P) = max{p;,ps},
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the Hausdorff distance.

In this paper we answer this question negatively. We shall prove that for the
Eggleston’s polygon the §(n) functions are not convex. We will also construct in
R™, m >2, a convex body for which the §(n) functions are not convex, when
d(C,P) = f(py,ps), where f is a function belonging to 2 = {f: R*xR* U {(0,0)
— R: f(z,0) =1z, f(0,y) =y, max {z,} < f(z,9) }.

The functions fy(z,y)= (zA+ y'\)l/x, A€(0,00) and fy(z,y) = max{z,y}
belong to (2.

RESULTS
The case IR2

The convex body C fixed in Eggleston’s example, is a regular 2r sided
polygon of side-length k, and let X,, denote it. We shall see that for X,, the
6(n) functions are not convex when fe€ Q.

LEMMA 1. There ezists We P, and Z € P," such that
P (X2r1 W) = KSin(T/2r) ’ (1)

K
p2(Xar,Z) = 3 tan(a/r) . (2)
Proof. To prove (1) let W be the polygon formed by joining r alternate

vertices of X,,.. For (2) we take Z, a polygon formed by producing r alternate
sides of X,,.. 1

Now we take r large enough to let us construct two polygons in which the
following lemma is based on.

LEMMA 2. For r large enough, the following is true:
8(2r-1) > Ksin(x/r)/{4[1 + cos2(x/2r)]} = 6. (3)

Proof. We begin by constructing two regular polygons of 2r sides, X’
and X” such that X' c X,.cX”. If I/, [, [” are the sides of X', X,., X”
respectively, then the polygons will verify that, for each i, L/, L, ” are parallel
and f denotes the distance between 4’ and £, and between ” and ;.

Take a vertex v;” of X” formed by the sides ” and %, , and construct the
triangle C; joining v;” to the mid-points of §” and [, , which shall be denoted by
h; and h;,; respectively. These triangles have disjoint interiors.
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The value of § has been chosen so that the polygon formed by joining h; on
adjacent sides is also the polygon formed by the bisectors of the angles £(&;; ,4).

Let L be a polygon such that d(X,,,L) < § and let v; be the vertex of X,
contained in the interior of C;. The open ball B(v;,f) Cint(C;). From the
definition of d, there exists f€ Q such that d(X,,,L) = f(p1(Xap,L),p2(Xs,L))
therefore f(py (Xar,L),p2(Xsr,L)) < B from where
(a) p1(Xpp,L) <P = there exists z€ L such that z€ B(v;,f) c int(C;),
(b) pa(Xy.,L) < B, therefore L c X”.

From (a) we conclude that the straight line joining h; and h;,; meets in
int(L), and from (b) L has at least one vertex in each int(C;). Therefore L has
at least 2r vertices. This proves boundary (3). 1

To finish the proof, one must bear in mind the inequalities §(n) < § i(n) and
6(n) < 6°(n), and suppose that 6(n) is a convex function. Then using the
lemmas 1,2 and considering that a convex function g(n) of the integral variable
n, such that g(p)=0, verifies that g(p-r)>rg(p-1) (r=1,...,p-1), the
following inequalities are true

Ksin(x/2r) = py (Xor, W) > 6°(r) > 8(r) > ré(2r-1) >
> rKsin(x/r)/{4[1 + cos2(x/2r)]} . (4)

But inequalitie (4) is false if r is large. Similarly, it may be shown that
6'(n) and 6°(n) are not convex.

The case |R3

We are going to construct in R a polytope with 4r vertices for which the
d{n) functions, when d(C,P)= f(p;,p2), and feQ, are not convex. This
polytope shall be denoted by X, and will be constructed based on Xj,,. Through
induction on m, a convex body in R™, for which the #(n) functions, when
d(C,P) = f(p1,p2) and fe Q, are not convex.

DEFINITION 1. We say that ACR" is a straight polytope with n-1
dimensional bases and height ¢, if there exists a hyperplane H in R™ which
contains a polytope B such that A ={z+Au:z€ B and || < ¢}, where u is a
vector of norm 1, orthogonal to H.

We consider in R® the z=0 plane and X, contained in it. We are going to
work with the poiytope Xy = {z+Au : z€ Xy, and |A| < ¢}, when u=(0,0,1).
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LEMMA 3. There ezists W* € P, and 2* € Pol such that
p1(X4r, W*) = Ksin(n/2r) , (8)
K
p2(Xyr, 2*) = 5 tan(x/r) . (6)
Proof. 'To prove (5), construct a straight polytope W* with base W (see

(1)) and height ¢. To demostrate (6), construct a different straight polytope Z*
with base Z (see (2)) and height ¢. 1

In the proof of the following inequality a family of convex bodies appears.
From a certain large value of ¢, it is possible to affirm that each convex body
contains a ball with centre at a vertex of X, and radius f, so that the interiors
of the convex bodies are disjoint.

LEMMA 4.
8(4r-1) > Ksin(x/r)/{4[1 + cos?(x/2r)]} = 8. (7)

Proof Construct the straight polytopes X’ = {z+Alu:z€ X,/ and
|A\| <€é-P} and X” ={z+Au:z€ X,” and || < € +[}, where X,/ and X,” are
the X’ and X” constructed in the proof of Lemma 3.

We shall construct a family of 4r convex bodies with disjoint interiors, and
such that each open ball with centre at a vertex of X, and radius f§ is contained
inside one of the convex bodies. Therefore, reasoning as in the proof of Lemma 2,
any polytope L such that d(X,.,L) <f would have at least 4r vertices.
This prove (7).

The convex bodies are defined in the following way: let C; be the tetra—
hedron whose vertices are v”, a vertex of X”, and the mid-points on v;” edges.
We can assert that B(v”,f) cint(C;) if ¢ is large, and that the interiors of C;
are disjoint. W

For n=4r, é(n) =0, if §(n) was convex, reasoning as we did at the end of
the case IR2, one would obtain the iniquality

K sin(7/2r) > 2r K sin(x/r)/{4[1 + cos?(x/2r)]}

which is false for large r. Then §(n) cannot be convex. Analogously, it can be
shown that 6*(n) and §°(n) are not convex.

Remarks. An example in R™ can be constructed by induction.
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