# Dowker-Type Theorems in Finite Dimensional Spaces

#### MARIANO RODRÍGUEZ-ARIAS FERNÁNDEZ

Dpto. de Matemáticas, Universidad de Extremadura, 06071 Badajoz, Spain

AMS Subject Class. (1991): 52A20, 52A27, 52A15.

Received April 20, 1993

#### INTRODUCTION

Let C be a subset of a metric space. We shall say that C is a convex body if it is a compact convex set with a non-empty interior.

In  $\mathbb{R}^m$  with the norm induced by the usual scalar ptoduct, there are some estimators, not necessarily a metric, of "the distance" between convex bodies. In what follows d shall be one of those estimator functions.

For n=m+1, m+2,... let  $\mathcal{P}_n$  be the set of all convex polytopes having at most n vertices. Given a convex body C we define  $\mathcal{P}_n^{\ i}(C)$  to be the set of polytopes of  $\mathcal{P}_n$  contained in C and let similarly  $\mathcal{P}_n^{\ c}(C)$  denote the set of polytopes of  $\mathcal{P}_n$  containing C. We shall write  $\mathcal{P}_n^{\ i}$ ,  $\mathcal{P}_n^{\ c}$  instead of  $\mathcal{P}_n^{\ i}(C)$ ,  $\mathcal{P}_n^{\ c}(C)$ .

Let  $\delta: \mathbb{N} \to \mathbb{R}$  the function defined by  $\delta(n) = \inf\{d(C, P) : P \in \mathcal{P}_n(C)\}$ , where C is a fixed convex body. In the same way shall be defined the functions  $\delta^c(n)$  and  $\delta^i(n)$ , when  $P \in \mathcal{P}_n^c(C)$ ,  $\mathcal{P}_n^i(C)$  respectively. When referring to the three functions at one time, they will be called  $\delta(n)$ .

Given C and P, two arbitrary convex bodies, let us define the functions:

$$\rho_1(C,P) = \sup_{x \in C} \inf_{y \in P} |x - y| \quad \text{and} \quad \rho_2(C,P) = \rho_1(P,C).$$

If it is clear which are the convex bodies we refer to, we shall denote these functions as  $\rho_1$  and  $\rho_2$ 

Some classical theorems of Dowker [1] about packing and covering problems promoted the study of the convexity of this type of functions.

Eggleston in [2], while working on those topics, constructed a convex body C in  $\mathbb{R}^2$  for which the  $\delta(n)$  functions, when  $d(C,P) = \delta^E(C,P) = \rho_1 + \rho_2$ , are not convex. On the other hand Gruber [3] leaves it open the question of whether or not the  $\delta(n)$  functions are convex, when  $d(C,P) = \delta^H(C,P) = \max\{\rho_1,\rho_2\}$ ,

the Hausdorff distance.

In this paper we answer this question negatively. We shall prove that for the Eggleston's polygon the  $\delta(n)$  functions are not convex. We will also construct in  $\mathbb{R}^m$ ,  $m \ge 2$ , a convex body for which the  $\delta(n)$  functions are not convex, when  $d(C,P) = f(\rho_1,\rho_2)$ , where f is a function belonging to  $\Omega = \{f: \mathbb{R}^+ \times \mathbb{R}^+ \cup \{(0,0) \to \mathbb{R}: f(x,0) = x, f(0,y) = y, \max\{x,y\} \le f(x,y)\}$ .

The functions  $f_{\lambda}(x,y) = (x^{\lambda} + y^{\lambda})^{1/\lambda}$ ,  $\lambda \in (0,\infty)$  and  $f_{\omega}(x,y) = \max\{x,y\}$  belong to  $\Omega$ .

#### RESULTS

# The case $\mathbb{R}^2$

The convex body C fixed in Eggleston's example, is a regular 2r sided polygon of side-length k, and let  $X_{2r}$  denote it. We shall see that for  $X_{2r}$  the  $\delta(n)$  functions are not convex when  $f \in \Omega$ .

LEMMA 1. There exists  $W \in \mathcal{P}_{r}^{i}$  and  $Z \in \mathcal{P}_{r}^{c}$  such that

$$\rho_1(X_{2r}, W) = K \sin(\pi/2r) , \qquad (1)$$

$$\rho_2(X_{2r}, Z) = \frac{K}{2} \tan(\pi/r) . \tag{2}$$

*Proof.* To prove (1) let W be the polygon formed by joining r alternate vertices of  $X_{2r}$ . For (2) we take Z, a polygon formed by producing r alternate sides of  $X_{2r}$ .

Now we take r large enough to let us construct two polygons in which the following lemma is based on.

LEMMA 2. For r large enough, the following is true:

$$\delta(2r-1) \geqslant K \sin(\pi/r)/\{4[1+\cos^2(\pi/2r)]\} = \beta. \tag{3}$$

*Proof.* We begin by constructing two regular polygons of 2r sides, X' and X'' such that  $X' \subset X_{2r} \subset X''$ . If  $l_i'$ ,  $l_i$ ,  $l_i''$  are the sides of X',  $X_{2r}$ , X'' respectively, then the polygons will verify that, for each i,  $l_i'$ ,  $l_i$ ,  $l_i''$  are parallel and  $\beta$  denotes the distance between  $l_i'$  and  $l_i$ , and between  $l_i''$  and  $l_i$ .

Take a vertex  $v_i''$  of X'' formed by the sides  $l_i''$  and  $l_{i+1}''$ , and construct the triangle  $C_i$  joining  $v_i''$  to the mid-points of  $l_i''$  and  $l_{i+1}''$ , which shall be denoted by  $h_i$  and  $h_{i+1}$  respectively. These triangles have disjoint interiors.

The value of  $\beta$  has been chosen so that the polygon formed by joining  $h_i$  on adjacent sides is also the polygon formed by the bisectors of the angles  $\angle(l'_{i+1}, l'_{i})$ .

Let L be a polygon such that  $d(X_{2r},L) < \beta$  and let  $v_i$  be the vertex of  $X_{2r}$  contained in the interior of  $C_i$ . The open ball  $B(v_i,\beta) \subset \operatorname{int}(C_i)$ . From the definition of d, there exists  $f \in \Omega$  such that  $d(X_{2r},L) = f(\rho_1(X_{2r},L),\rho_2(X_{2r},L))$  therefore  $f(\rho_1(X_{2r},L),\rho_2(X_{2r},L)) < \beta$  from where

- (a)  $\rho_1(X_{2r}, L) < \beta \implies \text{there exists } z \in L \text{ such that } z \in B(v_i, \beta) \subset \text{int}(C_i),$
- (b)  $\rho_2(X_{2r}, L) < \beta$ , therefore  $L \subset X''$ .

From (a) we conclude that the straight line joining  $h_i$  and  $h_{i+1}$  meets in int(L), and from (b) L has at least one vertex in each int( $C_i$ ). Therefore L has at least 2r vertices. This proves boundary (3).

To finish the proof, one must bear in mind the inequalities  $\delta(n) \leq \delta^i(n)$  and  $\delta(n) \leq \delta^c(n)$ , and suppose that  $\delta(n)$  is a convex function. Then using the lemmas 1, 2 and considering that a convex function g(n) of the integral variable n, such that g(p) = 0, verifies that  $g(p-r) \geqslant rg(p-1)$   $(r=1,\ldots,p-1)$ , the following inequalities are true

$$K\sin(\pi/2r) = \rho_1(X_{2r}, W) \geqslant \delta^i(r) \geqslant \delta(r) \geqslant r\delta(2r-1) \geqslant$$
$$\geqslant rK\sin(\pi/r)/\{4[1 + \cos^2(\pi/2r)]\}. \tag{4}$$

But inequalitie (4) is false if r is large. Similarly, it may be shown that  $\delta^{i}(n)$  and  $\delta^{c}(n)$  are not convex.

## The case $\mathbb{R}^3$

We are going to construct in  $\mathbb{R}^3$  a polytope with 4r vertices for which the  $\delta(n)$  functions, when  $d(C,P)=f(\rho_1,\rho_2)$ , and  $f\in\Omega$ , are not convex. This polytope shall be denoted by  $X_{4r}$  and will be constructed based on  $X_{2r}$ . Through induction on m, a convex body in  $\mathbb{R}^m$ , for which the  $\delta(n)$  functions, when  $d(C,P)=f(\rho_1,\rho_2)$  and  $f\in\Omega$ , are not convex.

DEFINITION 1. We say that  $A \subset \mathbb{R}^n$  is a straight polytope with n-1 dimensional bases and height  $\xi$ , if there exists a hyperplane H in  $\mathbb{R}^n$  which contains a polytope B such that  $A = \{x + \lambda u : x \in B \text{ and } |\lambda| \leq \xi\}$ , where u is a vector of norm 1, orthogonal to H.

We consider in  $\mathbb{R}^3$  the z=0 plane and  $X_{2r}$  contained in it. We are going to work with the polytope  $X_{4r}=\{x+\lambda u:x\in X_{2r}\text{ and }|\lambda|\leqslant\xi\}$ , when u=(0,0,1).

LEMMA 3. There exists  $W^* \in \mathcal{P}_{2r}^i$  and  $Z^* \in \mathcal{P}_{2r}^c$  such that

$$\rho_1(X_{4r}, W^*) = K \sin(\pi/2r) , \qquad (5)$$

$$\rho_2(X_{4r}, Z^*) = \frac{K}{2} \tan(\pi/r) . \tag{6}$$

*Proof.* To prove (5), construct a straight polytope  $W^*$  with base W (see (1)) and height  $\xi$ . To demostrate (6), construct a different straight polytope  $Z^*$  with base Z (see (2)) and height  $\xi$ .

In the proof of the following inequality a family of convex bodies appears. From a certain large value of  $\xi$ , it is possible to affirm that each convex body contains a ball with centre at a vertex of  $X_{4r}$  and radius  $\beta$ , so that the interiors of the convex bodies are disjoint.

LEMMA 4.

$$\delta(4r-1) \geqslant K \sin(\pi/r)/\{4[1+\cos^2(\pi/2r)]\} = \beta. \tag{7}$$

*Proof.* Construct the straight polytopes  $X' = \{x + \lambda u : x \in X_{r'} \text{ and } |\lambda| \leq \xi - \beta\}$  and  $X'' = \{x + \lambda u : x \in X_{r''} \text{ and } |\lambda| \leq \xi + \beta\}$ , where  $X_{r'}$  and  $X_{r''}$  are the X' and X'' constructed in the proof of Lemma 3.

We shall construct a family of 4r convex bodies with disjoint interiors, and such that each open ball with centre at a vertex of  $X_{4r}$  and radius  $\beta$  is contained inside one of the convex bodies. Therefore, reasoning as in the proof of Lemma 2, any polytope L such that  $d(X_{4r}, L) < \beta$  would have at least 4r vertices. This prove (7).

The convex bodies are defined in the following way: let  $C_i$  be the tetrahedron whose vertices are  $v_i$ ", a vertex of X", and the mid-points on  $v_i$ " edges. We can assert that  $B(v_i$ ",  $\beta) \subset \operatorname{int}(C_i)$  if  $\xi$  is large, and that the interiors of  $C_i$  are disjoint.

For n = 4r,  $\delta(n) = 0$ , if  $\delta(n)$  was convex, reasoning as we did at the end of the case  $\mathbb{R}^2$ , one would obtain the iniquality

$$K\sin(\pi/2r) \ge 2r K\sin(\pi/r)/\{4[1+\cos^2(\pi/2r)]\}$$

which is false for large r. Then  $\delta(n)$  cannot be convex. Analogously, it can be shown that  $\delta^{i}(n)$  and  $\delta^{c}(n)$  are not convex.

Remarks. An example in  $\mathbb{R}^m$  can be constructed by induction.

## REFERENCES

- DOWKER, C.H., On minimum circumscribed polygons, Bull. Amer. Math. Soc. 50 1. (1944), 120-122.
- 2.
- EGGLESTON, H.G., Approximation to plane convex curves. (I) Dowker-type theorems, *Proc. London Math. Soc.* 7(3) (1957), 351-377.

  GRUBER, P.M., Approximation of convex bodies, in "Convexity and its Applications", Birkauser-Verlag, Basel, 1983, p. 135. 3.