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1. INTRODUCTION

Poisson processes are suitable models for a broad variety of counting
phenomenon. Nevertheless, there are too many situations in which this model is
inadequate because of the excessively deterministic character of its intensity
function. Let us think in an event such as the radiactive particles detected by a
Geiger counter if it is managed over a surface in a random way, as example, as a
Brownian motion. In fact, its intensity, is randomized by an external origin and
the Poisson model must be revised. - .

Situations as the above mentioned one drove to Cox [3] to introduce the
doubly stochastic Poisson processes (DSPP) as counting processes {N(t),t>to}
with intensity u(z(t)), depending upon a vectorial random process {z(t),t>t}
such that, for almost every sample path of this external process, {N(¢)} is an
homogeneous Poisson process with rate p(z(t)). Therefore, the discrete density
function is given by '

P(N(t)=n)=E[P(N(t)=n/z(s), s>t] =
= 2B [ [} miats)) as]"expf~ i (als)) as}]

Some important contributions on theoretical and practical aspects of DSPPs
are the ones of Asher & Lainiotis [1], Bartlett [2], Grandell [4], Jiménez &
Valderrama [5], Konecny [6], Lanska [7], Neuts [8], Ogata & Akaike [9],
Rudemo [10] and Snyder & Miller [11], among others.

In this paper we consider that the intensity function follows a Gaussian
distribution with positive mean, as an application of the classical central limit
theorem to several forces acting on the intensity function as i.i.d. variables. We
denote it by I(¢)=(z(t)), being its mean and variance functions M(t) and

(1)
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V(t) respectively, and the covariance function R(t,s).
2. THE CHARACTERISTIC FUNCTION

By operating with the intensity and having into account the symmetry of
the covariance function we have

) E[[ S {I(s)-—M(s)}ds]2]= Si [ R dvs=2 [ [ R(us)dvds

On the other hand, by the Karhunen—Loéve theorem (Wong & Hajek [12])
we can write '

(3) I(t) = Li=1 #(t) by
where {¢y(¢)} is the L2—orthonormal basis of eigenfunctions of a Fredholm
integral equation whose kernel is the covariance function:

A$(8)= [ R(t:5)8(s)ds, to<t<T
and {b;} is a sequence of independent random variables. By denoting now

E[b] = mi, Var[b] = u,

we have

*) B[[f 16)-M)} a5’ =Tics [ [ 810 o
and then, from (2) and (4):

(5) ©_, [ Si alo) ds]%,‘ =2} [ R(us)duds.

We can enunciate the following result:

THEOREM 1. The characteristic function of a DSPP {N(t), t>ty} with
Gaussian random intensity {I(t)} is given by '

(6) @n@y(u)= exp{(e‘“—l)zft; ft; R(v,8) dvds + (e‘“—l)ft; M(s)ds}.

Proof. By using (3) into the general expression of the characteristic
function, we can write

Byo(v) = B [exp{(e*=1) [ 1(5)ds}] = =1 04(0)
where

O(u) = E [exp{(efu-n[ Ji ¢,,(s)ds] b,,}] .

Simple operations in this expresion on the basis that b ~» N(my,,) give
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Byo(w) =exp{(e-1)2 D01 [ £ da(s)ds)mt (-1 Bhes [ £ 00(s) 5| i}
If we apply now the identity (5) and observe that

M(t) = Z::l ¢k(t) my,
the proof is complete. §

From expression (6) of the characteristic function, statistical moments for
the DSPP can be calculated as follows

E[N(t)] = . t; M(s)ds, Var[N(t)] =2 [ t; J. o B(vs) dvds + ft; M(s)ds.
3. EVALUATING THE SAMPLE—FUNCTION DENSITY OF A DSPP

The sample—function density of a DSPP {N(t), t>t,} with occurrence
times ‘wy,...,w, is given by (Snider & Miller [11]):

_ [t t
(1) p(N(s), to<a<t)) =E [exp{ Si 1oas+ [} logI(s)dN(s)}] .
If we suppose again that {I(t)} is a Gaussian process with positive mean value

and apply the Karhunen—Loéve expansion (3), expression (7) can be simplified as
follows:

THEOREM 2. Under above assumptions the sample— function density for the
DSPP is

e ¢}
®)  BUNe), a<s<t) = Y hlisonibiroate) [ g5 gu(a),
Jyeeidn=1 -
’kl,...,kn=l
being ,
B(Giyeomrfarkireenrka) = E [bjl---bjn-bkl---bkuexp{— %, Ak(t)bk}] .

Furthermore, we can write

h(jlr"’jmklr“)kn) = ”;::1“2:1 F;,izpm)(_Ak(t))
where

A(t) = ft:) ¢ (s)ds

and Fbk(') is the moment generating function of the Gaussian variable b so that
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r
F(2Pm)(u) = eu2/2 Z:TO _Vg'L uz(Pm"")
Ok = (2!
and p, denotes the number of subscripts wverifying ji=k;=m, so that
E:1:1 Pp=n.

Proof. The sample—function density (7) can be expressed now as follows

P({N(s)), 0<s<t}) = B [1(uy) I(wg) -« Hwp)exp{- Tudu( )t}

and this expression turns into (8) taking into account that

. © Pmtim
h(Jl)’"aJn;klr"vkn) = ”m:lE [bm exp{— ZkAk(t)bk}]
where p,, and g, denote the number of subscripts j and k; respectively equal to
m, being X, =Xy, ¢n="n. By applying now the moment factorization property
of Gaussian random variables we have A(jk)=0 if p,+¢, and

B[(62m)2exp{- Luat)ts}] = [E [5, 2 exp - Ax(t)ta} | = LB A1)
and the proof is complete. 1
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