A Vectorial Expression for Liapounov's Central Limit Theorem

R. ARDANUY AND A.L. SÁNCHEZ

Dpto. de Matemática Pura y Aplicada, Universidad de Salamanca,

Plaza de la Merced 1, E37008 Salamanca, Spain

AMS Subject Class. (1980): 60F05, 60B12, 60G50

Received November 20, 1992

In this paper we prove two Liapounov's central limit theorems for a sequence of independent p-dimensional random vectors, with mean and variance and covariance matrix Σ_n , in cases of both general and uniformly bounded sequence. Let $\{X_n\}$ be a sequence of p-dimensional random vectors, Varadarajan [2] proves that in order that the distributions of the X_n should be convergent in law to a limit, it is necessary and sufficient that the distribution of $l(X_n)$ should converge in law to some limit for every linear function l. In the next lemma we state a result about the limit law.

LEMMA 1. Let $\{X_n\}$ be a sequence of p-dimensional random vectors. A necessary and sufficient condition for $X_n \xrightarrow{\mathcal{L}} X$ is that $c^T X_n \xrightarrow{\mathcal{L}} c^T X$ for each vector $c \in \mathbb{R}^p$.

Proof. Let $\alpha_{X_n}(t)$ and $\alpha_X(t)$ be the characteristic functions of X_n and X. If $X_n \xrightarrow{\mathcal{L}} X$ then $\alpha_{X_n}(t)$ converges pointwise to $\alpha_X(t)$, so for each $c \in \mathbb{R}^p$ we have that the characteristic functions of $Y_n = c^T X_n$ and $Y = c^T X$ verify:

$$\alpha_{Y_n}(s) = \mathbb{E}[\exp(\mathrm{i} s Y_n)] = \mathbb{E}[\exp(\mathrm{i} s c^T X_n)] = \alpha_{X_n}(sc) \longrightarrow \alpha_{X}(sc) = \alpha_{Y}(s)$$

and then by the continuity theorem this implies that $Y_n = c^T X_n \xrightarrow{\mathcal{L}} Y = c^T X$. Conversely, if we assume that $c^T X_n \xrightarrow{\mathcal{L}} c^T X$ for each $c \in \mathbb{R}^p$, then taking $Y_n = t^T X_n$ and $Y = t^T X$, we have that:

$$\alpha_{X_n}(t) = \mathbf{E}[\exp(\mathbf{i}\,t^T X_n)] = \mathbf{E}[\exp(\mathbf{i}\,Y_n)] = \alpha_{Y_n}(1) \longrightarrow \alpha_{Y}(1) = \alpha_{X}(t)$$

hence $X_n \xrightarrow{\mathcal{L}} X$; this completes the proof.

In the following theorem we assume that $\|\cdot\|$ is a norm such that $\|AB\| \le \|A\| \|B\|$ for the product of matrices A and B.

LIAPOUNOV'S VECTORIAL THEOREM. Let $\{X_n\}$ be a sequence of p-dimensional random vectors, with zero mean and variance and covariance matrix Σ_n , and let $\{a_n\}$ be a positive divergent sequence such that

$$a_n^{-1}(\mathbf{1}_1 + \ldots + \mathbf{1}_n) \longrightarrow \mathbf{1}$$
 and $a_n^{-1-\delta/2} \sum_{k=1}^n \mathbf{E}[\|\mathbf{X}_k\|^{2+\delta}] \longrightarrow 0$

for a positive δ , then:

$$\frac{X_1+\ldots+X_n}{\sqrt{a_n}}\stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}_p(0,\mathfrak{P}).$$

Proof. Let Y_n be the random vector sequence:

$$Y_n = \frac{X_1 + \ldots + X_n}{\sqrt{a_n}}$$

and let $c \in \mathbb{R}^p$ be any constant p-dimensional vector, then:

$$c^T Y_n = \frac{1}{\sqrt{a_n}} \sum_{k=1}^n U_k$$

where $U_k = c^T X_k$, k = 1, 2, 3, ... is a sequence of independent random variables, with zero mean, such that:

(2)
$$a_n^{-1-\delta/2} \sum_{k=1}^n \mathbb{E}[|U_k|^{2+\delta}] \leqslant a_n^{-1-\delta/2} \sum_{k=1}^n \mathbb{E}[\|c\|^{2+\delta} \|X_k\|^{2+\delta}] = \|c\|^{2+\delta} a_n^{-1-\delta/2} \sum_{k=1}^n \mathbb{E}[\|X_k\|^{2+\delta}] \longrightarrow 0$$

and whose variances satisfy:

(3)
$$s_n^2 = \sum_{k=1}^n \operatorname{Var}(U_k) = \sum_{k=1}^n c^T \sum_k c = a_n c^T \frac{\sum_{1+\cdots+\sum_n} c}{a_n} c$$

(4)
$$\frac{s_n^2}{a_n} = c^T \frac{\mathbf{1}_1 + \ldots + \mathbf{1}_n}{a_n} c \longrightarrow c^T \mathbf{1}_c.$$

If $c^T \Sigma c > 0$ then we have from (2) and (4) that:

$$s_n^{-2-\delta} \sum_{k=1}^n \mathbb{E}[|U_k|^{2+\delta}] = \frac{a_n^{1+\delta/2}}{s_n^{2+\delta}} \cdot \frac{1}{a_n^{1+\delta/2}} \cdot \sum_{k=1}^n \mathbb{E}[|U_k|^{2+\delta}] \longrightarrow (c^T \sum_{k=1}^n c^{1-\delta/2} \cdot 0 = 0$$

thus Liapounov's theorem (see pp. 275-277 of Loeve's book [1] for example) implies that:

$$\xrightarrow{U_1 + \ldots + U_n} \xrightarrow{\mathcal{L}} \mathcal{N}(0,1)$$

and hence

(5)
$$c^T Y_n = \frac{U_1 + \ldots + U_n}{\sqrt{a_n}} = \frac{s_n}{\sqrt{a_n}} \cdot \frac{U_1 + \ldots + U_n}{s_n} \xrightarrow{\mathcal{L}} \mathcal{N}(0, c^T \mathfrak{D}c).$$

On the other hand, if $c^T \Sigma c = 0$ then we have from (1) and (4) that:

(6)
$$\operatorname{E}[c^{T} Y_{n}] = 0 \quad \text{and} \quad \operatorname{Var}[c^{T} Y_{n}] = \frac{s_{n}^{2}}{a_{n}} \longrightarrow c^{T} \Sigma c = 0$$

from which we obtain:

(7)
$$c^T Y_n \xrightarrow{\mathcal{P}} 0 \equiv \mathcal{N}(0, c^T \Sigma c).$$

Hence from (5) and (7) we have that:

(8)
$$c^T Y_n \xrightarrow{\mathcal{L}} \mathcal{N}(0, c^T \mathfrak{I} c)$$

for each $c \in \mathbb{R}^p$. From lemma 1 and (8) we may obtain the conclusion of the theorem.

LIAPOUNOV'S VECTORIAL THEOREM (bounded case). Let $\{X_n\}$ be a sequence of independent and uniformly bounded p-dimensional random vectors, with zero mean and variance and covariance matrix \mathbf{L}_n , and let $\{a_n\}$ be a positive divergent sequence such that $a_n^{-1}(\mathbf{L}_1 + ... + \mathbf{L}_n) \longrightarrow \mathbf{L}$, then:

$$\frac{X_1+\ldots+X_n}{\sqrt{a_n}} \xrightarrow{\mathcal{L}} \mathcal{N}_p(0,\mathbb{D}).$$

Proof. Let us denote by $\|\cdot\|$ the euclidean norm. Since $\|X_k\| \leq M < +\infty$, it follows that:

(9)
$$\mathbf{E}[\|\mathbf{X}_{k}\|^{2+\delta}] \leq M^{\delta} \mathbf{E}[\|\mathbf{X}_{k}\|^{2}] = M^{\delta} \mathbf{E}[\mathrm{Tr}(X_{k}^{T} X_{k})] = M^{\delta} \mathrm{Tr}(\mathbf{E}[X_{k} X_{k}^{T}]) = M^{\delta} \mathrm{Tr}(\mathfrak{T}_{k}).$$

Therefore,

(10)
$$a_n^{-1-\delta/2} \sum_{k=1}^n \mathrm{E}[\|\mathbf{X}_k\|^{2+\delta}] \leq M^{\delta} a_n^{-1-\delta/2} \sum_{k=1}^n \mathrm{Tr}(\mathbf{\hat{\Sigma}}_k) = M^{\delta} a_n^{-\delta/2} \mathrm{Tr}[a_n^{-1}(\mathbf{\hat{\Sigma}}_1 + \dots + \mathbf{\hat{\Sigma}}_n)] \longrightarrow \frac{M^{\delta}}{m} \mathrm{Tr}(\mathbf{\hat{\Sigma}}) = 0,$$

and Liapounov's vectorial theorem applies. This concludes the proof.

REFERENCES

- LOÈVE, M., "Probability Theory", 3rd ed., Van Nostrand Reinhold Co., New York, 1963.
- 2. VARADARAJAN, V.S., A useful convergence theorem, Sankhyā 20 (1958), 221-222.