A New Rational and Continuous Solution for the Hilbert's 17th Problem C.N. DELZELL 1, LAUREANO GONZÁLEZ-VEGA 2 AND HENRI LOMBARDI 3 ¹ Dpt. Mathematics, Lousiana State University, Lousiana, USA AMS Subject Class. (1980): 14P10 Received February 14, 1992 In this note it is presented a new rational and continuous solution for the 17th Hilbert's problem who asks if an everywhere positive polynomial can be expressed as a sum of squares of rational functions. This solution (Theorem 1) improves the results in [2] in the sense that our parameterized solution is continuous and depends in a rational way on the coefficients of the problem (what it is not the case in the solution presented in [2]). Moreover our method simplifies the proof and it is easy to generalize to other situations: for example in [4 or 5] we improve the results obtained in [7] giving more general rational and continuous solutions for several instances of Positivstellensatz (Theorem 2). The main tool used in the proofs is the Positivstellensatz for the semipolynomials introduced in [4 or 6]. If K is an ordered field and R is a real closed field containing K, a K-semipolynomial is a function obtained by a finite repetition of composition of polynomials with coefficients in K and the function absolute value. A well-known proposition assures that the set of K-semipolynomials agrees with the minimal sup-inf stable set of functions containing polynomials with coefficients in K (see for example [3]). A detailed version of the proof presented here can be found in [4] and another proof for this result avoiding the use of the Semipolynomial Positiv-stellensatz will appear in [5]. We shall use freely the definitions and results presented in [4 or 6] concerning semipolynomials. ² Dpto. de Matemáticas, Estad. y Comp., Univ. de Cantabria, Santander, Spain ³ Laboratoire de Mathematiques, Université de Franche-Comté, Besançon, France ² Partially supported by CICyT PB 89/0379/C02/01. Let $f_{n,d}(c,X)$ be the generic polynomial with degree d and n variables (c denotes the list of coefficients $c_1,...,c_m$ and X the list of variables $(X_1,...,X_n)$. It is a standard fact in Real Algebraic Geometry that $$\mathbb{F}_{n,d} = \bigcup_{i=1}^k \bigcap_{i=1}^{n_i} \{c : R_{n,d,i,j}(c) \geqslant 0\}$$ This last equality allows us to describe the set $\mathbb{F}_{n,d}$ in the following way $$\mathbb{F}_{n,d} = \left\{ c : \left[\sup_{i=1,\ldots,k} \left\{ \inf \left\{ R_{n,d,i,j}(c) : 1 \leqslant j \leqslant n_i \right\} \right\} \right] \geqslant 0 \right\}$$ So, if for every i in $\{1,...,k\}$ we define $$H_{n.d.i}(c) = \inf\{R_{n.d.i.j}(c) : 1 \leqslant j \leqslant n_i\}$$ and $$H_{n,d}(c) = \sup \left\{ R_{n,d,i}(c) : 1 \leqslant i \leqslant k \right\}$$ we have obtained the following description for the set $\mathbb{F}_{n,d}$ $$\mathbb{F}_{n,d} = \{c : H_{n,d}(c) \geqslant 0\}$$ where $H_{n,d}(c)$ is a Q-semipolynomial. We have shown the equivalence $$c \in \mathbb{F}_{n,d} \iff H_{n,d}(c) \geqslant 0 \iff \forall x \in \mathbb{R}^n \ f_{n,d}(c,x) \geqslant 0$$ with $f_{n,d}(c,x)$ a polynomial and $H_{n,d}(c)$ a \mathbb{Q} -semipolynomial. Let us consider now $H_{n,d}(c)$ as a \mathbb{Q} -semipolynomial expression defined by the straight-line program that translates the definitions of $H_{n,d,1},...,H_{n,d,k}$ and $H_{n,d}$. So, we can apply the Real Positivstellensatz for the \mathbb{Q} -semipolynomial expressions in the context $H_{n,d}$ (see [4 or 6]) to the implication $$\forall c \in \mathbb{R}^m \quad \forall x \in \mathbb{R}^n \quad \{H_{n,d}(c) \geqslant 0 \Longrightarrow f_{n,d}(c,x) \geqslant 0\}$$ or, what is the same, to the incompatibility of the system of generalized sign conditions $$\dot{H}_{n,d}(c) \geqslant 0$$, $f_{n,d}(c,X) < 0$ Applying such Positivstellensatz to this system we obtain an algebraic identity that can be rewritten as $$f_{n,d}(c,x)g(c,x) = f_{n,d}(c,x)^{2r} + h(c,x)$$ (1) where h and g are Q-semipolynomial expressions evidently positive or null under the hypothesis $H_{n,d}(c) \ge 0$. Coming back again to the definitions it is easy to see that g and h are polynomials in X whose coefficients are \mathbb{Q} —semipolynomial expressions in c. More precisely, g and h are sum of terms $$p_j(c)q_j(c,X)^2$$ where the $q_j(c,X)$ have the same type than g and h and the $p_j(c)$ are \mathbb{Q} -semipolynomial expressions evidently positive or null under $H_{n,d}(c) \geqslant 0$ and with the context $H_{n,d}(c)$. This allows us to conclude that, without loss of generality, we can suppose that every $p_j(c)$ is a product whose factors have the following type - the Q-semipolynomial expression $H_{n,d}(c)$, - a Q-semipolynomial expression $$H_{n,d}(c) - H_{n,d,i}(c)$$ or $R_{n,d,i,j}(c) - H_{n,d,i}(c)$ • a positive rational or the square of a Q-semipolynomial expression in c. If we multiply by $f_{n,d}(c,X)$ every member of the equality (1) we get $$f_{n,d}(c,X) = \frac{f_{n,d}(c,X)^2 g(c,X)}{f_{n,d}(c,X)^{2r} + h(c,X)} = \frac{f_{n,d}(c,X)^2 g(c,X) k(c,X)}{k(c,X)^2} = \frac{g_1(c,X)}{k(c,X)^2}$$ denoting by k(c, X) the denominator of the first fraction and where g_1 has the same type than g and h. We have proved the following theorem. THEOREM 1. The generic polynomial with degree d and n variables can be written as a sum of rational functions $$f_{n,d}(c,X) = \sum_{j} p_{j}(c) \left[\frac{q_{j}(c,X)}{k(c,X)} \right]^{2}$$ (*) where - the $q_j(c,X)$ and k(c,X) are polynomials in the variables X whose coefficients are \mathbb{Q} -semipolynomial expressions in the variables c. Moreover if $c \in \mathbb{F}_{n,d}$ then k(c,X) only vanishes on the zeros of $f_{n,d}(c,X)$, - each $p_j(c)$ is a product whose factors are $H_{n,d}(c)$ or one of the \mathbb{Q} -semipolynomial expressions $H_{n,d}(c)-H_{n,d,i}(c)$ or one of the \mathbb{Q} -semipolynomial expressions $R_{n,d,i,j}(c)-H_{n,d,i}(c)$ or a positive rational or the square of a Q-semipolynomial expression in c. So, under the hypothesis $H_{n,d,i}(c) \ge 0$ the positivity of $p_j(c)$ is "clearly" evident, • the equality $$f_{n,d}(c,X)k(c,X)^2 - \sum p_j(c)q_j(c,X)^2 = 0$$ is specially evident in the following sense: the first member of the equality, as polynomial in X, has as coefficients \mathbb{Q} —semipolynomial expressions in c which are formally null. The equality (*) provides a rational and continuous solution for the Hilbert's 17th problem because - all the coefficients (the $p_j(c)$ and the coefficients of the $q_j(c,X)$ and k(c,X) considered as polynomials in X) appearing in the equality (*) are rational and continuous functions in c, more precisely they are \mathbb{Q} -semipolynomials expressions in the variables c, - every term in sum (*) $$p_j(c) \left[\frac{q_j(c,X)}{k(c,X)} \right]^2$$ is a rational function which can be extended by continuity to a semialgebraic continuous function in the semialgebraic closed set $\mathbb{F}_{n,d} \times R$. The solution for the Hilbert's 17th problem provided by theorem 1 can be seen as a particular case of Real Positivstellensatz and for this case we have just proved the existence of a solution depending on the parameters of the problem in a semipolynomial way. So what we shall do, is to generalize this result for another cases. The next theorem provides a rational and continuous solution for some cases of Real Positivstellensatz (see [4] for a detailed proof). THEOREM 2. Let $\mathbb{H}(c,X)$ be a system of generalized sign conditions on polynomials in K[c,X], where the X_i 's are considered as variables and the c_j 's as parameters. If $S_{\mathbb{H}}$ is the semialgebraic defined by $$c \in S_{\mathbb{H}} \iff \forall x \in \mathbb{R}^n \quad \mathbb{H}(c,X) \text{ is incompatible}$$ and S_{H} is locally closed then there exist $H_1(c)$ and $H_2(c)$ K-semipolynomial expressions such that $$c \in S_{\mathsf{H}} \iff \left[H_1(c) \geqslant 0, \ H_2(c) > 0 \right]$$ If $c \in S_{\mathbb{H}}$ then the incompatibility of $\mathbb{H}(c) = \mathbb{H}(c,X)$ inside \mathbb{R}^n is made obvious by a strong incompatibility ## $\downarrow \mathbb{H}(X) \downarrow$ with type fixed (independent of c) and with coefficients given by K-semipolynomial expressions in c (which are polynomials inside the context defined by $H_1(c)$ and $H_2(c)$. Moreover - the algebraic identity obtained, seen as polynomial in X, has a structure specially simple, more precisely, every coefficient of such identity as polynomial in X is a K-semipolynomial expression in c formally null (in particular, this K-semipolynomial expression defines the zero function of c without supposing $H_1(c) \geqslant 0$ and $H_2(c) > 0$), - every coefficient p(c) in the algebraic identity which must be positive or zero (resp. strictly positive) is given by a K-semipolynomial expression evidently positive or null (resp. strictly positive) under the hypothesis $H_1(c) \ge 0$ and $H_2(c) > 0$. In the same way that our rational and continuous solution for the Hilbert's 17th problem showed in theorem 1, improves Delzell's result (see [2]), what is obtained in theorem 2 improves Scowcroft's results (see [7]) in four aspects - a-. the semialgebraic set S_H needs not to be for us, necessarily closed, - b-. the coefficients of our solution are K-semipolynomials in the parameters c for the hypothesis, - c-. the algebraic identity obtained, seen as polynomial in X, has a structure specially simple, its coefficients are K-semipolynomial expressions in c formally null, - d. the positivity or strict positivity of the coefficients (which must satisfy such condition) in the solution is clearly evident under the hypothesis $H_1(c) \ge 0$ and $H_2(c) > 0$. - In [4] it is studied the constructive meaning of these results in the framework of the field R: the field of real numbers for the Constructive Analysis (see [1]), i.e. the real numbers defined as Cauchy sequences of rational numbers. So, using the parameterized results obtained concerning the 17th Hilbert's problem, it is shown how to derive the same theorem in Constructive Algebra (while the non-parameterized solution does nor allow to derive any kind of consequence). ## REFERENCES - 1. BISHOP, E, BRIDGES, D, "Constructive Analysis", Springer-Verlag, 1985. - 2. DELZELL, C.N., A continuous, constructive solution to Hilbert's 17th problem Inventiones Mathematicae 76 (1984), 365-384. - 3. DELZELL, C.N., On the Pierce-Birkhoff conjecture over ordered fields, Rocky Mountain Journal of Math. 19(3) (1989), 651-668. - GONZÁLEZ-VEGA, L., LOMBARDI, H., A real nullstellensatz and positivstellensatz for the semipolynomials over and ordered field, to appear in the J. Pure and Appl. Algebra. - GONZÁLEZ-VEGA, L., LOMBARDI, H., DELZELL, C.N., A continuous and rational solution to Hilbert's 17th problem and several positivstellensats cases, to appear in the proceedings of the Symposium MEGA-92 (Effective Methods in Algebraic Geometry). - Algebraic Geometry). 6. GONZÁLEZ-VEGA, L., LOMBARDI, H., A real nullstellensatz and positivstellensatz for the semipolynomials over an ordered field, Extracta Mathematicae 7(1) (1992), 54, 50 - SCOWCROFT, P., Some continuous positivstellenatz, J. Algebra 124 (1989), 521-532. Mountain Journal of Math. 19(3) (1989), 651-668.