## Partially Flat and Projective Modules 1

## S. KHALID NAUMAN

Department of Mathematics, NED University of Engineering & Technology

Karachi 75270, Pakistan

AMS Subject Class. (1985 Revision): 16A50, 18E05, 18G05

Received May 22, 1992

Assume that A and B are rings with identity and that M and N are (B,A) and (A,B) bimodules, respectively. We say that  $_AN$  (respt.  $M_A$ ) is partially flat (respt. projective) with respect to a subcategory  $\mathscr{C}(A)$  of  $\mathbf{Mod}-A$  (the category of all unital right A-modules), if the tensor functor,  $-\otimes_A N$  (respt. the hom functor  $\mathrm{Hom}_A(M,-)$ ) is exact on  $\mathscr{C}(A)$ . For example, a flat or a projective module is partially flat or projective with respect to  $\mathbf{Mod}-A$ , and every module is partially flat and projective with respect to the zero subcategory.

The aim of this paper is to prove that  $_AN$  (respt.  $M_A$ ) is partially flat (respt. projective) with respect to the subcategory  $\mathcal{S}(A)$  of  $\mathbf{Mod}-A$ . (In brief, we write these terms as  $\mathcal{S}(A)$ -flat and  $\mathcal{S}(A)$ -projective.). This is established in Theorem II. In Theorem I a cancellation law related to the objects of  $\mathcal{S}(A)$  is proved.

We define  $\mathcal{Z}(A)$  to be the full additive subcategory of  $\operatorname{Mod}-A$  such that the class of objects of  $\mathcal{Z}(A)$  is the intersection of the classes of objects of  $\operatorname{Mod}(A_M)$ ,  $\operatorname{Mod}(A^N)$ , and  $\mathcal{Z}(A)$ , where  $\operatorname{Mod}(A_M)$  (respt.  $\operatorname{Mod}(A^N)$ ) is the full additive subcategory of  $\operatorname{Mod}-A$  of all those objects which remain invariant under the composition functor  $\operatorname{Hom}_A(M,-)\otimes_B M$  (respt.  $\operatorname{Hom}_B(N,-\otimes_A N)$ ), in a natural way, and  $\mathcal{Z}(A)$  is the full additive subcategory of  $\operatorname{Mod}-A$  of all those objects on which the two adjoint functors  $\operatorname{Hom}_A(M,-)$  and  $-\otimes_A N$  remain naturally isomorphic. In above, both bimodules M and N are assumed to be the ingradiants of the Morita context (A,B,M,N,<,>,[,]), in which <,> and [,] are (A,A) and (B,B) bimodule homomorphisms:  $N\otimes_B M \longrightarrow A$  and  $M\otimes_A N \longrightarrow B$ , respectively, such that if we set:  $<,>(n\otimes m)=< n,m>$  and  $[,](m\otimes n)=[m,n]$ , then < n,m> n'=n[m,n'] and m< n,m'>=[m,n]m'.

<sup>&</sup>lt;sup>1</sup> Research supported by NSRD Board, Pakistan.

In a compatible way the full additive subcategories  $\operatorname{Mod}(B_N)$ ,  $\operatorname{Mod}(B^M)$ ,  $\mathscr{D}(B)$  and  $\mathscr{S}(B)$  of  $\operatorname{Mod}-B$  are defined. Details about  $\operatorname{Mod}(A_M)$ ,  $\operatorname{Mod}(A^N)$ ,  $\mathscr{D}(A)$  and  $\mathscr{S}(A)$  etc., may be seen in [3] and [4], while for Morita context and various algebraic notions the reader may refer to [2] and [1].

The following cancellation laws (under isomorphisms) hold for the subcategories  $\mathcal{S}(A)$  and  $\mathcal{S}(B)$ .

THEOREM I. Let N, M,  $\mathcal{S}(A)$  and  $\mathcal{S}(B)$ , be as above and let V and W be objects of the intersecting subcategory  $\mathcal{S}(A)$  (respt.  $\mathcal{S}(B)$ ). Then the following cancellation law (under isomorphisms) holds:

$$V \otimes_A N \cong W \otimes_A N \Rightarrow V \cong W \text{ in } \mathbf{Mod} - A$$
 (a)

 $(respt.: V \otimes_B M \cong W \otimes_B M \Rightarrow V \cong W \text{ in } Mod-B).$ 

*Proof.* Being objects of  $\mathcal{S}(A)$ , V and W are objects of  $Mod(A_M)$  and  $\mathcal{D}(A)$ . By the definition of  $\mathcal{D}(A)$ ,

$$V \otimes_A N \cong \operatorname{Hom}_A(M, V)$$
 (b)

via the map

$$\{-,-\}: v \otimes n \mapsto \{v,n\}: \{v,n\}(m) = v < n,m > .$$
 (b')

By tensoring both sides of (b) by  $_BM$ , and by the definition of  $Mod(A_M)$ , we get the right A-module isomorphisms:

$$V \otimes_{\mathcal{A}} N \otimes_{\mathcal{B}} M \cong \operatorname{Hom}_{\mathcal{A}}(M, V) \otimes_{\mathcal{B}} M \cong V \tag{c}$$

via the canonical maps

$$v \otimes n \otimes m \longmapsto \{v, n\} \otimes m \longmapsto \{v, n\}(m) = v < n, m > . \tag{c'}$$

The details about the maps (b') and (c') may be seen in [4].

Similarly, we have:

$$W \otimes_{A} N \otimes_{B} M \cong \operatorname{Hom}_{A}(M, W) \otimes_{B} M \cong W \tag{d}$$

via the canonical maps

$$w \otimes n \otimes m \mapsto \{w,n\} \otimes m \mapsto \{w,n\}(m) = w < n,m > .$$

If  $V \otimes_A N \cong W \otimes_A N$ , then from (c) and (d) we conclude that  $V \cong W$  as right A-modules. Hence (a) holds. The remaining part of the theorem holds by symmetry.

THEOREM II. Let N, M,  $\mathcal{S}(A)$  and  $\mathcal{S}(B)$  be as above. Then

- (1)  $_{A}N$  is  $\mathcal{S}(A)$ -flat,
- (2)  $M_A$  is  $\mathcal{S}(A)$ -projective,
- (3)  $_BM$  is  $\mathcal{S}(B)$ -flat,
- (4)  $N_B$  is  $\mathcal{S}(B)$ -projective.

Proof. Let the sequence

$$0 \longrightarrow U \xrightarrow{f} V \longrightarrow W \longrightarrow 0$$
 (e)

be exact, where  $U, V, W \in \mathcal{S}(A)$ . We will show that:

$$0 \longrightarrow U \otimes_{A} N \xrightarrow{f \otimes N} V \otimes_{A} N \longrightarrow W \otimes_{A} N \longrightarrow 0$$
 (f)

is also exact. The functor  $-\otimes_A N$  is right exact in general. We will prove that on  $\mathcal{S}(A)$ , it is also left exact. Thus we will only show that:

$$U \otimes_{A} N \xrightarrow{f \otimes N} V \otimes_{A} N$$

must be injective, or that the  $Ker(f \otimes N) = 0$ .

Let  $x \in \operatorname{Ker}(f \otimes N)$ . We may write  $x = \sum u_i \otimes n_i$ , where  $\sum$  is a finite sum,  $u_i \in U$  and  $n_i \in N$ . Being an object of  $\mathcal{S}(A)$ , U is also an object of  $\mathcal{S}(A)$ . So, by (b) and (b') of Theorem I, the image of x in  $\operatorname{Hom}_A(M,U)$  is  $\sum \{u_i, n_i\}$ . For any arbitrary  $m \in M$ , by (c) and (c'), we write,

$$\sum \{u_i, n_i\}(m) = \sum u_i < n_i, m > .$$
 (g)

The image of x in  $V\otimes_A N$  under  $f\otimes N$  is  $\sum f(u_i)\otimes n_i$  and the image of  $\sum \{u_i,n_i\}$  under  $\operatorname{Hom}(M,f)$  in  $\operatorname{Hom}_A(M,V)$  is

$$\operatorname{Hom}(M,f)\left[\sum \left\{u_i,n_i\right\}\right] = \sum \left\{f(u_i),n_i\right\}.$$

By evaluating this last map on  $m \in M$ , we get,

$$\sum \{f(u_i), n_i\}(m) = \sum f(u_i) < n_i, m > 0$$

$$= f(\sum u_i < n_i, m > 0).$$
(h)

By our assumption  $(f \otimes N)(x) = 0$ . So the corresponding image of x in  $\operatorname{Hom}_A(M,V)$ , which is  $\sum \{f(u_i),n_i\}$ , is equal to 0. Since  $f\colon U \longrightarrow V$  is injective, by (h),  $\sum u_i < n_i, m > = 0$ . But then by (g),  $\sum \{u_i,n_i\}(m) = 0$ . As m is arbitrary,  $\sum \{u_i,n_i\} = 0$ . Thus it is concluded that x = 0 and so  $\operatorname{Ker}(f \otimes N) = 0$ . Hence (1) holds.

By the definition of  $\mathcal{D}(A)$ , the functors  $\operatorname{Hom}_A(M,-)$  and  $-\otimes_A N$  are naturally isomorphic on the subcategory  $\mathcal{S}(A)$ . Hence (2) holds from (1).

(3) and (4) are satisfied by symmetric properties of the Morita context (A, B, M, N, <, >, [,]), and that of the subcategories  $\mathcal{S}(A)$  and  $\mathcal{S}(B)$ .

## REFERENCES

- 1. ANDERSON, F.W. AND FULLER, K.R., "Rings and Categories of Modules", Springer-Verlag, New York, 1974.
- 2. JACOBSON, N., "Basic Algebra II", W.H. Freeman & Co., 1980.
- 3. KHALID NAUMAN, S., Static modules, Morita contexts, and equivalences, J. Algebra 135 (1990), 192-202.
- 4. KHALID NAUMAN, S., Intersecting subcategories of static modules and their equivalences, J. Algebra (to appear).