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Arithmetic networks over a field K (see [5]) are arithmetic circuits, using
inputs, constants from the ground field K, gates from {+,—,*,/}, boolean gates
{V,A} with inputs in {T,F}, selections gates and sing gates, of the sing(a,l),
that ouputs a boolean value according to whether the sing of a agrees with IA,
where:

i) If our field K is an algebraically closed field, the sing condition e {=,#}.
ii) If our field K is a real closed field or K =Q, the sing condition e {>,=,<}.

When dealing with arithmetic circuits -that use only arithmetic gates-, it
was shown in [6] that the degree of the rational function they compute is a lower
bound for its depth. This is not the case for arithmetic networks, as it was shown
in [5], where a nice counterexample is exhibited. For general infinite fields, one
can use the “thick-degree” -the maximum of the degrees in the Zariski dense
pieces- as lower bound. For algebraically closed fields, a “logylogq(degree)”
lower bound can be given (see [5]).

Now, for K algebraically closed, let us consider the set

V= Unen{zeK:22"=1} .

Let f be the characteristic function of the above set. Applying [5], the best lower
bound one can get for the depth of any arithmetic network that computes f is
logom, since the thick degree is constant. Nevertheless, it seems quite reasonable
that this function cannot be solved by any “polylog” depth parallel algorithm.
Our following analysis of lower bounds shows, in particular, that this problem can
not be solved in less than /n parallel steps.
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For any field K and any constructible set W over K denote by fx(W) the
number of (semialgebraic) connected components of W if K is a real closed field
or the number of connected components with non-empty interior of the euclidean
closure of W in R™ if K is the field of the rational numbers. If K is an
algebraically closed field containing the rationals then fg (W) denotes the number
of connected components of W c R2".

Assume N is an arithmetic network that evaluates a function

¢:K"— K™x {F,T}".

Write ¢ = (¢4, ¢B) where ¢4 denotes its arithmetic part and ¢B denotes the
boolean one. For (z,y) eK? say A(z,y)=T if z-y=0 and A(z,y)=F
otherwise. For (¢,6) € {F,T}™ x {F, T}" define the set

W(e,8) ={(z,y) eK"xK™: (A(y; -¢4(2)), % (2)) = (&4, 6) } -
THEOREM. The depth of N is in the class

[loga(supc,5 Bk (W(e,5)))
0 — — logy(m +v) .

The length of an input z€ K* is the index of the last non-zero coordinate,
i.e. length(z) =length(z,,...,2,,...) =n, where n is the last non-zero coordinate
of z. The elements of K* of length n can be identified with the subset of K™ with
Tz, +0.

Assume K is either an algebraically closed field or a real closed field or
K=Q, NCg is the class of subsets of K* recognized by sequences of arithmetic
networks with polylogarithmic depth and a polynomial number of processors (in
the input length).

Assume K is an algebraically closed field or a real closed field. The class Pg
is the class of all those arithmetic problems over K that can be accepted by a
BSS-machine over K within time polynomial on the input length (see [2]).

COROLLARY. For q field K either algebraically closed of characteristic zero
or real closed, there is an arithmetic problem in Pg, which is not in NCk.
Moreover, this arithmetic problem can be choosen universal (i.e. its description
does not depend on the ground field).

DEFINITION. i) The class Pq is the class of all arithmetic problems over
Q accepted by a BSS-machine within cost polynomial in the input size (see [2]).
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ii) The class GPq (genuinely polynomial time over Q) is the class of all
arithmetic problems over Q accepted by a rational RAM within time (uniform
cost) polynomial in the input length.

COROLLARY. There is an arithmetic problem over Q in Pqo N GPq which is
not in NCq.

COROLLARY. There is a language £ C Q*, such that £ € P and £ ¢ NCq.

Assume K a real closed or algebraically closed field of characteristic zero.
When speaking about K we consider the first order language L together with the
non-logic symbols {a: a€Q},+,—,X,=. In the real closed case one also includes
the relational symbol “>” (see [3] and [4] for the complete details).

COROLLARY. The quantifier elimination in the elementary theory of K is
simply ezponential in parallel time.

Recall that the “Knapsack problem” is: Given (zq,...,z,) decide whether
there is Sc{l,...,n} satisfying ¥, oz;=1. Lower bounds for the sequential
arithmetical complexity of this last problem can be found in [1].

COROLLARY. Any parallel machine needs time at least Q(y/n) to solve the
“Knapsack problem”. In particular the “Knapsack problem” is in NPg \ NCg.
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