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A toplogical space S is rationally elliptic [3] if the spaces H*(S;Q) and
7x(S)®Q are both finite dimensional. The homogeneous spaces are classical
examples of such spaces.

It is known [5, theorem 3] that the (rational) cohomology of a 1—connected
elliptic space S is a Poincaré duality algebra.

DEFINITION. A top class of a Poincaré duality algebra H =21,~v=0 Hiis a
generator of HV.

In this abstract we present an explicit formula for a cycle representing the
top class of certain elliptic spaces, including the homogeneous spaces. For that, -
we shall relly in the connection between Sullivan’s Theory of minimal models and
Rational homotopy theory for which [3], [6] and [10] are standar references. Here
we recall some notation and conventions:

We shall work over a field K of characteristic zero unless stated otherwise.
A KS—complex is a commutative differential graded algebra (CDGA) (AX,d)
where

A X = Exterior (X°44) ® Symmetric ( Xeven)

is the free commutative algebra generated by the graded vector space X=X>1
which has a well ordered basis {z,} such that dz, €AX.,. If degz,<degzs
implies a < f, the KS—complex (AX,d) is minimal. When (AX,d) is 1—connec-
ted X1=0, this is equivalent to say that dXcA>2X. Given the CDGA A(S) of
differential forms on a topological space S [10], there exists a minimal
KS§—complex (AX,d) and a quism (morphism inducing homology isomorphism)
¢:(AX,d)—=>A(S). This is the minimal model of S and is unique up to
isomorphism [6, chap. 6]. Since A(S) and C*(S;K) are connected by a chain of
quisms, H*(AX,d) and H*(S;K) are naturally identified.
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DEFINITION. A KS-complex (AZ,d) is said to be a pure tower if dZeven =
0 and dZodd c A(Zeven). If dim Z < oo, (AZ,d) is a finite pure tower.

Remark. Homogeneous spaces are examples of spaces whose minimal
models are pure towers [4, chap. XI] or [1].

Given a pure tower (AZ,d) we shall denote X =Zeve" and Y =Z0dd. Let
(AZ,d)=(A(z1,.-,22) ®A(Y1,--,Ym), @) be a finite pure tower and note f;=dy;,
i=1,...,m. In [5, §3] it is shown that H*(AZ,d) is finite dimensional if and only
if the algebra

"([zlr'wzn] / (flr")fm)a

where (fy,...,fm) denotes the ideal generated by the polynomials fi,...,f,, is finite
dimensional. Then it clear that m >n.
Assume dim H*(AZ,d) < co and write:

1 2 -1 .
fi =0;T +a; Tot - +a’? Tp-1 +a?zm z=1,...,m,

where o] are polynomials in the variables Zj,Zj41,--1Tq Consider the matrix:

ol af -l 0l

1 2 n-1 n

A=| %2 82" 02 43
‘172 "pa1la

Cp QG *** QG O

and let PeK[zy,...,Z,,¥1,.-,Ym] be the polynomial defined as follows:

P= ) (CDTTTR R G i U
1<i<<in<m
in which P;..; is the determinant of the matrix of order n formed by the
columns i,...,i, of A.
Then we prove:

THEOREM. P is a cycle representing the top cohomology class of H(AZ,d).

EXAMPLES. (1) Consider the homogeneous space U(4)/(U(2)xU(2)). Its
minimal model is a finite pure tower of the form [4, chap. XI.4]:

2 2
(A(Z,2 4,¥5,97),d), 0Ty =dT,=0, dys =23 20524, dy; =T3—T3T4

in which subscripts denote degrees. Then, we have



THE TOP COMOHOLOGY CLASS OF CERTAIN SPACES 183

2
22—2Z4 0

—ZT9 Ty Ty
" and by theorem above we can compute a generator of the top cohomology class:
[2524—225] € H8(U(4)/ (U(2)XU(2))).
(2) Consider now the space SU(6)/(SU(3)xSU(3)) whose minimal model is:

(A(24,Z6,Y790,911),d), dy7 =—33, dyg=—2243¢, dyy; =—ze.

In this case:
: '—34 0
A = —21’6 0
0 —Tg

Then, H19(SU(6)/(SU(3)XSU(3))) is generated by [z4z¢ys— 272 y7]-
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