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The Schatten S, classes, 1< p <00, were introduced and studied in (6] 'in connection
with the problem of finding suitable classes of operators having a well—defined trace.

In this paper, we consider a generalization &, of the Schatten classes S, obtained in
correspondence with opportune continuous, strictly increasing, sub—additive functions
¢ [0,00) — [0,00) such that ¢(0) =0 and p(1) = 1. '

Our purpose is to study the spaces S, of the p—nuclear operators and to compare their
properties with those of the well-known space & of nuclear operators. The classes S, are
subsets of the algebra .#(£2) of all bounded linear operators on £2. As well known, every
compact operator T on {2 has a representation of the form

T= Zu €nen®fy (1)
where (e,) and (f,) are orthonormal systems in £2 and the sequence (£,) can always be taken
to be non—increasing, non—negati\}e and such that ¢{,—0. For p>0, it is customary to
denote by S, the space of all operators T as in (1) for which the quantity

Up( T)= Yn E:
is finite (cf. [5, §15.5]). Thus, for 1< p < oo the S, are the Schatten classes while for 0<p<1T
the elements of &, are the so—called p—nuclear operators (cf. 5, theorem 18.5.2]).
Now, following [3, §I1.2], we consider the set & of all continuous, strictly increasing,
sub—additive functions ¢ : [0,00) — [0,00) such that ¢(0) = 0. For any function ¢ € $’ and
any scalar sequence 7=(1,) we put

%(17) = Zn 90(|77u|)
and

Lo={n:04(n)<o0} _
and we observe that, because of sub—additivity, £, is a linear space of sequences on which o,
is a metric generating a topology under which ({,0,) becomes a complete, metrizable,
topological vector space. Since each €@’ is equivalent to a concave function ¢ € ¢’ and
since pp €®’ whenever p€®’ and p>0, we may always assume that ¢ is concave and
satisfies p(1)=1, so that ¢(t)>¢, for all t€[0,1]. Then, we denote by & the set of all such
functions and, from now en, we a'xlways assume that p € ®.

An operator Te.7(¢?) admitting the representation (1) with (£)el, is called
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¢—nuclear and the set of all such operators is denoted by S, We observe that, when
p(t)=tP (0<p<1), then {,=¢? and hence S,=&,, showing that the p—nuclear operators
are a generalization of the p—nuclear ones.

If TeS,, we put a,(T)=0,(¢) if £=(¢,) is the sequence in the representation (1) of
T.

THEOREM 1. S, is an operator ideal (in the sense of Pietsch) and o, is o translation
invariant metric on it generating a topology under which S, becomes a complete, metrizable,
topological vector space in which the finite—rank operators are dense. Moreover, the inclusion
map (8y,0,) — (81,01) is continuous.

Now we put
B,={TeS,:0,(T)<1} and B;={TeS;:01(T)<1}.
Then we have the following
LEMMA. B, is the closure in (S1,01) of the absolutely convez hull of B,,.
Denote by S;, the topological dual of (8,0, and put
lAll,=sup {|<T,A>|: TeB,} ,

for A€S,, Since Sy, = (S,,0,) = (5.0101) = &1, by the lemma, and (Sy,[|-ll,) = (S1.l-1) =
Z(12), by [6], we have

THEOREM 2. (Sy,|l-lly) i @ Banach space isometric to #£(¢2).
Turning now our attention to the extreme points of B, we find

THEOREM 3. Let T€ B,. Then the follo'wmg assertions are equivalent:
i) T is an eztreme point;
i) T'= eof, with |le|| = || f| =1.

Because the extreme points of the "unit ball" of S, are the same of those of the "unit
ball"of &, that is the operators of rank 1 and norm 1.

Fma.ll}, we investigate the isometries of (S,0,), i.e. the linear bijections J: §,— &,
such that oq,'(J( T)) = 0,(T). We find that the results of [1] can be extended to the following

THEOREM 4. Let J:8,— 8, be linear and onto. The following assertions are
equivalent:
i) J is an isometry; ‘
i) There ezist two unitary operators U,V on {2 such that J = UeV.

Full details and proofs will appear in [7].
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