On the Schatten \mathcal{S}_{ω} Classes

MARILDA A. SIMÕES

Inst. di Matematica, Fac. di Architettura, Univ. di Napoli, 80134 Napoli, Italy

AMS Subject Class. (1980): 47B10, 47D15, 47D30

Received June 11, 1991

The Schatten \mathcal{S}_p classes, $1 \leq p < \infty$, were introduced and studied in [6] in connection with the problem of finding suitable classes of operators having a well-defined trace.

In this paper, we consider a generalization \mathcal{S}_{φ} of the Schatten classes \mathcal{S}_{p} obtained in correspondence with opportune continuous, strictly increasing, sub-additive functions $\varphi:[0,\infty)\longrightarrow [0,\infty)$ such that $\varphi(0)=0$ and $\varphi(1)=1$.

Our purpose is to study the spaces \mathcal{S}_{φ} of the φ -nuclear operators and to compare their properties with those of the well-known space \mathcal{S}_1 of nuclear operators. The classes \mathcal{S}_{φ} are subsets of the algebra $\mathscr{L}(\ell^2)$ of all bounded linear operators on ℓ^2 . As well known, every compact operator T on ℓ^2 has a representation of the form

$$T = \sum_{n} \xi_{n} e_{n} \otimes f_{n} , \qquad (1)$$

where (e_n) and (f_n) are orthonormal systems in ℓ^2 and the sequence (ξ_n) can always be taken to be non-increasing, non-negative and such that $\xi_n \to 0$. For p > 0, it is customary to denote by \mathcal{S}_p the space of all operators T as in (1) for which the quantity

$$\sigma_p(T) = \sum_n \xi_n^p$$

is finite (cf. [5, §15.5]). Thus, for $1 \le p < \infty$ the \mathcal{S}_p are the Schatten classes while for $0 the elements of <math>\mathcal{S}_p$ are the so-called p-nuclear operators (cf. [5, theorem 18.5.2]).

Now, following [3, §II.2], we consider the set Φ' of all continuous, strictly increasing, sub-additive functions $\varphi:[0,\infty)\longrightarrow[0,\infty)$ such that $\varphi(0)=0$. For any function $\varphi\in\Phi'$ and any scalar sequence $\eta=(\eta_n)$ we put

$$\sigma_{\varphi}(\eta) = \sum_{n} \varphi(|\eta_{n}|)$$

and

$$\ell_{\varphi} = \{ \eta : \sigma_{\varphi}(\eta) < \infty \}$$

and we observe that, because of sub-additivity, ℓ_{φ} is a linear space of sequences on which σ_{φ} is a metric generating a topology under which $(\ell_{\varphi}, \sigma_{\varphi})$ becomes a complete, metrizable, topological vector space. Since each $\varphi \in \Phi'$ is equivalent to a concave function $\tilde{\varphi} \in \Phi'$ and since $p\varphi \in \Phi'$ whenever $\varphi \in \Phi'$ and p > 0, we may always assume that φ is concave and satisfies $\varphi(1) = 1$, so that $\varphi(t) \geqslant t$, for all $t \in [0,1]$. Then, we denote by Φ the set of all such functions and, from now on, we always assume that $\varphi \in \Phi$.

An operator $T \in \mathcal{L}(\ell^2)$ admitting the representation (1) with $(\xi) \in \ell_{\varphi}$ is called

 φ -nuclear and the set of all such operators is denoted by \mathcal{S}_{φ} . We observe that, when $\varphi(t) = t^p$ ($0), then <math>\ell_{\varphi} = \ell^p$ and hence $\mathcal{S}_{\varphi} = \mathcal{S}_p$, showing that the φ -nuclear operators are a generalization of the p-nuclear ones.

If $T \in \mathcal{S}_{\varphi}$, we put $\sigma_{\varphi}(T) = \sigma_{\varphi}(\xi)$ if $\xi = (\xi_n)$ is the sequence in the representation (1) of T.

THEOREM 1. \mathcal{S}_{ϕ} is an operator ideal (in the sense of Pietsch) and σ_{ϕ} is a translation invariant metric on it generating a topology under which \mathcal{S}_{ϕ} becomes a complete, metrizable, topological vector space in which the finite-rank operators are dense. Moreover, the inclusion map $(\mathcal{S}_{\phi}, \sigma_{\phi}) \longrightarrow (\mathcal{S}_{1}, \sigma_{1})$ is continuous.

Now we put

$$B_{\omega} = \{ T \in \mathcal{S}_{\omega} : \sigma_{\omega}(T) \leqslant 1 \} \text{ and } B_1 = \{ T \in \mathcal{S}_1 : \sigma_1(T) \leqslant 1 \}.$$

Then we have the following

LEMMA. B_1 is the closure in (S_1, σ_1) of the absolutely convex hull of B_{φ} .

Denote by \mathcal{S}'_{ω} the topological dual of $(\mathcal{S}_{\omega}, \sigma_{\omega})$ and put

$$||A||_{\varphi} = \sup \{ | < T, A > | : T \in B_{\varphi} \} ,$$

for $A \in \mathcal{S}_{\varphi}'$. Since $\mathcal{S}_{\varphi}' = (\mathcal{S}_{\varphi}, \sigma_{\varphi})' = (\mathcal{S}_{\varphi}, \sigma_{1})' = \mathcal{S}_{1}'$, by the lemma, and $(\mathcal{S}_{\varphi}', \|\cdot\|_{\varphi}) = (\mathcal{S}_{1}', \|\cdot\|_{1}) = \mathcal{L}(\ell^{2})$, by [6], we have

THEOREM 2. $(\mathcal{S}'_{\varphi}, \|\cdot\|_{\varphi})$ is a Banach space isometric to $\mathscr{L}(\ell^2)$.

Turning now our attention to the extreme points of B_{ω} we find

THEOREM 3. Let $T \in B_{\varphi}$. Then the following assertions are equivalent:

- i) T is an extreme point;
- ii) $T = e \otimes f$, with ||e|| = ||f|| = 1.

Because the extreme points of the "unit ball" of \mathcal{S}_{φ} are the same of those of the "unit ball" of \mathcal{S}_1 , that is the operators of rank 1 and norm 1.

Finally, we investigate the isometries of $(S_{\varphi}, \sigma_{\varphi})$, i.e. the linear bijections $J: S_{\varphi} \longrightarrow S_{\varphi}$ such that $\sigma_{\varphi}(J(T)) = \sigma_{\varphi}(T)$. We find that the results of [1] can be extended to the following

Theorem 4. Let $J\colon \mathcal{S}_{\phi} \longrightarrow \mathcal{S}_{\phi}$ be linear and onto. The following assertions are equivalent:

- i) J is an isometry;
- ii) There exist two unitary operators U, V on ℓ^2 such that $J = U \otimes V$.

Full details and proofs will appear in [7].

REFERENCES

- J. ARAZY, The isometries of C_p, Israel J. Math. 22 (1975), 247-256.
 J.R. HOLUB, On the metric geometry of ideals of operators on Hilbert space, Math. Ann. 201 (1973), 157-163.
 V.B. MOSCATELLI, On the existence of universal λ-nuclear Fréchet spaces, J. Reine Angew. 2.
- 3. Math. 301 (1978), 1-26.
- 4. V.B. MOSCATELLI AND M.A. SIMÕES, Operator ideals on Hilbert space having a unique
- 5.
- extension to Banach spaces, Math. Nachr. 118 (1984), 69-87.

 A. PIETSCH, "Operator Ideals", Noth-Holland, Amsterdam, 1980.

 R. SCHATTEN, "A Theory of Cross Spaces", Ann. of Math. Studies 26, Princeton Univ. Press, Princeton, 1950.
- M. A. SIMÕES, On the space of φ -nuclear operators on ℓ^2 , to appear in Collectanea Math.