The Approximation of Continuous Linear Functionals

SEVER SILVESTRU DRAGOMIR

Department of Mathematics, Univ. of Timisoara, B-dul V. Parvan, No. 4, 1900 Timisoara, Romania

AMS Subject Class. (1980): 46B20

Received March 4, 1991

Let $(X, \|\cdot\|)$ be a real normed linear space and consider the following norm derivatives [4, p. 35]:

$$\begin{split} (x,y)_i &= \lim_{t \to 0} \; (\|\, y + tx\,\|^2 - \|\, y\,\|^2)/2t \;, \\ (x,y)_s &= \lim_{t \to 0} \; (\|\, y + tx\,\|^2 - \|\, y\,\|^2)/2t \;. \end{split}$$

Note that these mappings are well-defined on $X \times X$ and the following properties are valid [4, p. 35]:

- (i) $(x,y)_i = -(-x,y)_s$ if x,y are in X;
- (ii) $(x,x)_p = ||x||^2$ for all x in X;
- (iii) $(\alpha x, \beta y)_p = \alpha \beta(x, y)_p$ for all x, y in X and $\alpha, \beta \geqslant 0$;
- (iv) $(\alpha x+y,x)_p = \alpha ||x||^2 + (y,x)_p$ for all x,y in X and $\alpha \in \mathbb{R}$;
- (v) $(x+y,z)_p \le ||x|| \, ||z|| + (y,z)_p$ for all x,y,z in X;
- (vi) the element x in X is Birkhoff orthogonal over y in X, i.e., $||x+ty|| \ge ||x||$ for all t in \mathbb{R} iff $(y,x)_i \le 0 \le (y,x)_s$;
- (vii) the space $(X, \|\cdot\|)$ is smooth iff $(y,x)_i = (y,x)_s$ for all x,y in X or iff $(,)_p$ is linear in the first variable;

where p = s or p = i.

For other properties of $(,)_p$ see the papers [2] and [3] where further references are given.

Recall the famous theorem of Bishop-Phelps [1, p. 3]:

Theorem 1. Let C be a closed bounded convex set in the Banach space X, then the collection of functionals that achieve their maximum on C is dense in X^* .

By the use of this result we have:

THEOREM 2. Let X be a real Banach space. Then for every continuous linear functional $f: X \longrightarrow \mathbb{R}$ and for any $\epsilon > 0$ there exists an element $u_{f,\epsilon}$ in X so that the following estimation:

$$-\epsilon \|x\| + (x, u_{f,\epsilon})_i \leqslant f(x) \leqslant (x, u_{f,\epsilon})_s + \epsilon \|x\| \tag{1}$$

holds for all $x \in X$.

Proof. By the use of Bishop-Phelps theorem for the closed bounded convex set

 $C=\overline{B}(0,1)=\{x\in X/\|x\|\leqslant 1\}$ it follows that the collection of functionals that achieve their norm on closed unit ball is dense in X^* , i.e., for every $f\in X^*$ and $\epsilon>0$ there is a continuous linear functional f_ϵ on X which achieve their norm on $\overline{B}(0,1)$ and so that

$$|f(x)-f_{\epsilon}(x)| \leq \epsilon ||x|| \text{ for all } x \text{ in } X.$$
 (2)

Suppose $f_{\epsilon} \neq 0$ and let $v_{f,\epsilon} \in \overline{B}(0,1) \setminus \{0\}$ so that $f_{\epsilon}(v_{f,\epsilon}) = ||f_{\epsilon}||$. Then:

$$\|v_{f,\epsilon}\| \leqslant 1 = f_{\epsilon}(v_{f,\epsilon}) / \|f_{\epsilon}\| = f_{\epsilon}(v_{f,\epsilon} + \lambda y) / \|f_{\epsilon}\| \leqslant \|v_{f,\epsilon} + \lambda y\|$$

for all $\lambda \in \mathbb{R}$ and $y \in \text{Ker}(f_{\epsilon})$, i.e., $v_{f,\epsilon} \perp \text{Ker}(f_{\epsilon})$ and from (vi) we get:

$$(y, v_{f,\epsilon})_i \leq 0 \leq (y, v_{f,\epsilon})_s$$
 for all $y \in \text{Ker}(f_{\epsilon})$.

Let $x \in X$ and put $y := f_{\epsilon}(x)v_{f,\epsilon} - f_{\epsilon}(v_{f,\epsilon})x$. Then $y \in \text{Ker}(f_{\epsilon})$ for all $x \in X$ and then we obtain:

$$(f_{\epsilon}(x)v_{f,\epsilon} - f_{\epsilon}(v_{f,\epsilon})x, v_{f,\epsilon})_{i} \leqslant 0 \leqslant (f_{\epsilon}(x)v_{f,\epsilon} - f_{\epsilon}(v_{f,\epsilon})x, v_{f,\epsilon})_{s}$$

for all $x \in X$. Since:

$$(f_{\epsilon}(x)v_{f,\epsilon} - f_{\epsilon}(v_{f,\epsilon})x, v_{f,\epsilon})_{p} = f_{\epsilon}(x)\|v_{f,\epsilon}\|^{2} - (x, f_{\epsilon}(v_{f,\epsilon})v_{f,\epsilon})_{q}$$

for all $x \in X$, where $p \neq q$, $p,q \in \{i,s\}$, we conclude, by the above inequalities, that:

$$(x, f_{\epsilon}(v_{f,\epsilon})v_{f,\epsilon}/\|v_{f,\epsilon}\|^2)_i \leqslant f_{\epsilon}(x) \leqslant (x, f_{\epsilon}(v_{f,\epsilon})v_{f,\epsilon}/\|v_{f,\epsilon}\|^2)_s$$

for all $x \in X$, from where results:

$$(x, u_{f,\epsilon})_i \leqslant f_{\epsilon}(x) \leqslant (x, u_{f,\epsilon})_s \tag{3}$$

for all x in X, where $u_{f,\epsilon} := f_{\epsilon}(v_{f,\epsilon})v_{f,\epsilon}/\|v_{f,\epsilon}\|^2$.

Using (2) and (3) we obtain the desired estimation embodied in (1).

If $f_{\epsilon} = 0$ then (1) also holds with $u_{f,\epsilon} = 0$. The proof is finished.

COROLLARY. Let X be a smooth Banach space over the real number field and put $[x,y]:=(x,y)_i=(x,y)_s$, $x,y\in X$. Then for every continuous linear functional $f:X\longrightarrow \mathbb{R}$ and for any $\epsilon>0$ there exists an element $u_{f,\epsilon}$ in X so that the following approximation

$$|f(x)-[x,u_{f,\epsilon}]| \leq \epsilon ||x||$$
 for all x in X ,

holds.

REFERENCES

- 1. J. DIESTEL, "Geometry of Banach Spaces-Selected Topics", Springer-Verlag 485, Berlin, 1975.
- S. S. DRAGOMIR, A characterisation of best approximation elements in real normed linear spaces, Studia Univ. Babes-Bolyai Mathematica 33(3) (1988), 74-80.
- S.S. DRAGOMIR, On continuous sublinear functionals in reflexive Banach spaces and applications, to appear in Riv. Univ. Parma.
- N. PAVEL, "Differential Equations Associated to Some Nonlinear Operators in Banach Spaces", Ed. Acad., Bucaresti, 1977.