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Let (X,|-|)) be a real normed linear space and consider the following norm derivatives
[4, p. 35):
(s =lim (I +t 2~y
(sl =lim (ly-+iol2= [y 2)/2¢.

Note that these mappings are well-defined on XxX and the following properties are
valid [4, p. 35]:

() (z,9)i=—-(-2,9), ifz,yarein X;
G (2,2)p = ||| for all z in X;
(iii) (az,8y), = 0f(z,y), for all z,y in X and a,4>0;
(iv) (az+y,2), = allz]|?+(y,z), for all z,y in X and aeR;
(v) (z+y,2)p < llzll 2]l + (3,2) forall z,y,2in X;
(vi) the element z in X is Birkhoff orthogonal over y in X, i.e., ||z+ty| >|z| for all
¢ in R iff (y,z).- <0g (y’z)l;
(vii) the space (X,||-[l) is smooth iff (y,z); = (y,z), for all z,y in X or iff (, ), is

linear in the first variable; -

“where p=3s or p=i.

For other properties of (, ), see the papers [2] and [3] where further references are
given. : :
Recall the famous theorem of Bishop — Phelps [1, p. 3]:

THEOREM 1. Let C be a closed bounded convez set in the Banach space X, then the
collection of functionals that achieve their mazimum on C is dense in X*.

By the use of this result we have:

THEOREM 2. Let X be a real Banach space. Then for every continuous linear
- functional f: X—R and for any €>0 there ezists an element us . in X so that the following
estimation: '

—ellzll+(z,51,e)i < f(z) < (235, )s H el || (1
holds for all z€ X.
Proof. By the use of Bishop—Phelps theorem for ‘the closed bounded convex set
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C=B(0,1)={zeX/|z||<1} it follows that the collection of functionals that achieve their
norm on closed unit ball is dense in X*, i.e., for every feX* and ¢>0 there is a continuous
linear functional £ on X which achieve their norm on B(0,1) and so that

| f(z)-f(z)| <ellz| forall zin X. 2
Suppose £, #0 and let v¢ . € B(0,1)\{0} so that f,(vf )= £l Then:
log.e I <1 = Ao )EN = fCopet M) AN < llog e+ Myl
for all X eR and yeKer(f),i.e., vf L Ker(£.) and from (vi) we get:
(¥,7,e )i <0< (y,27,¢)s for all yeKer ().

Let z€ X and put y:= £ (2)vs,—f (v, )z. Then yeKer(f) for all ze X and then we
obtain:

(f;.(z)”f,e_fe(”f,e)z ) ”f,e)i <0< (f;(z)vf,e_f;(vf,e )z ) 1’f,e)a
for all ze X. Since:
(fe (z)vf,e"'j; ('Uf,e )z s Ufe )p = fe(z) "'Uf,e"2 - ( z:fe('vf,e)”f,e )q
for all z € X, where p #¢, p,q€{i,s}, we conclude, by the above inequalities, that:
(2, v, o5,/ v7,e )i < fe(2) < (2, fe(vp, g ef g e 12)s
for all z€ X, from where results:
(z’uf,e )i<f(z) < (z:“f,e‘)a (3)
for all z in X, where uy ¢ :=f.(v7,e ) g,/ v7,¢ %
Using (2) and (3) we obtain the desired estimation embodied in (1).
If f, =0 then (1) also holds with us =0. The proof is finished. 1
COROLLARY. Let X be a smooth Banach space over the real number field and put
[z,¥]:=(2,9)i=(2,9)s, z,y€X. Then for every continuous linear functional f: X — R and for
any €>0 there ezists an element ug . in X so that the following approzimation

[f(2)=[zup,e]| <ellzl| for allzin X,

holds.
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