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A basic knowledge about locally convex spaces can be obtained from [9], about operator
ideals from [11], and about both together from [8]. We follow those books concerning
notation. ) B

Let E be a locally convex spa.cé and .4 an operator ideal. We say that E is generated
by £ if for any neighborhood of 0, U there is another neighborhood of 0, V € U, such that
the canonical linking map Tyy € 6 (Ey,Eyp).

The class of all locally convex spaces generated by £ is denoted by Groth(.£). It is a
standing problem what can be said about the structure of E recovered from its pertenece to
a class Groth( £ ). Several contributions to this problem are in previous papers of the author
(3], 4], [5].

In this paper a special case of the problem is considered: starting with a continuous
injection /: X—— Y between Banach spaces, we form a reduced projective limit of real
interpolation spaces, obtaining in this way a Fréchet (non Banach) space, which we call
[X,Y]), We study relationships between I€.£ and [X,Y]g) 4 € Groth(.£) for several
choices (unconditionally converging, weakly compact, compact; completely continuous and
nuclear operators) of the ideal 4. :

Let us consider a couple of Banach spaces X,Y linked by a continuous injection with
dense range I: X— Y. The pair (X,Y) can be considered an interpolation couple. See [2]
for basic facts about interpolation. When 0 <4< 1, and 1 g< +00, the real interpolation
method gives a Banach intermediate space [X,Y]g,. When ¢’ <4, the inclusion I induces a
continuous injection g : [X, Y]y g — [X, Y]g

Let us fixe ¢, and take the projective limit

| X, Y]y = Lim Tyn[LX, Vo,
with respect to the maps yg.
The space [X,Y](g),q i5, to an extent, a generalization of some interesting spaces. If, for
instance, we take X ={, with the natural inclusion ,— &, then [£,45](9),g = Ne>0 fpre-
The question to be answered in this paper is to what extent "[X,Y]() , € Groth(.6)"
and "I€.6" are equivalent. Firstly notice that if [X,Y]e) , € Groth(.6), then not only
Ie £ but even Je.£™ for all n due to an obvious factorization

39



40 JESUS M.F. CASTILLO

1
X— Y

N/
[X, Yo,
7 N
[X» Y]O’,q I [X’ Y]O,q

wich implies that
LEMMA 1. [X,Y]g) 4 € £ = I € Npen A™.

For this reason we should choose idempotent operators ideals .§.
When £ =¥ (weakly compact operators) or J% (compact operators) then it is a
simple rewarding of some results of Beauzamy, joint to the "reiteration theorem", that

PROPOSITION 2. Let0<0<1,1<g< +00. [X,Y](g)q is ¢ Schwartz (resp an infra—
Schwartz) space if and only if [ € % (resp. I€ ¥').

If we choose £ = % (unconditionally converging operators, that is, those sending
weakly summable sequences into summable ones), then we find some troubles. Recall that a
continuous operator T : X— Y acting between Banach spaces is in % if and only if it is
not an isomorphism when restricted to any subspace of X isomorphic to cg; this implies, in
particular that a Banach space X does not contain a copy of cg if and only if id(X) € %.
This later result is still true for Fréchet spaces and we give in the paper one of the several
possible proofs for this fact (see also [7]).

From this we derive

PROPOSITION 3. If Y does not contain cg then [X,Y](g) 4 € Groth( % ).
In particular, this implies that:
COROLLARY 4. If Y does not contain cy, then [X,Y](q) , does not contain cy.

In the Banach spéce setting an analogous result was proved by Levy [10]. Since a
Fréchet space not containing cq can have associated Banach spaces containing cq (just
consider K6the’s example of a Fréchet Montel not Schwartz echelon space of order 0 (see
[8])), Levy’s result does not subsumes Corollary 4. It remains however to be know whether
the hypothesis "Y does not contain ¢(" is necessary.

Finally, if we consider the operator ideal .6 =2 (completely continuous operators,
that is, those sending weakly null sequences into norm null sequences), a trivial example, the
canonical inclusion 4 — £, shows that I€ 2 does not imply [X,Y](g) 4 € 2B.

For the sake of completeness we also consider in the paper the case of . =4 (nuclear
operators, that is, those admitting a representation of the form T = £, A, z},8y,, with (z})
and (y,) bounded sequences and (),)€4;). This operator ideal is not idempotent. The ideal
A9 = Nyen A Teceives the name of ideal of strongly nuclear operators, and operators in )
are characterized by admitting a representation as above but with () € Ny 4. We find



that:

ON SOME FRECHET INTERPOLATION SPACES 41

PROPOSITION 5. [X,Y](g) 4 15 a nuclear space if and only if I€ A.
This we prove making a simple calculation with entropy numbers:
PROPOSITION 6. If I belongs to some entropy ideal &, then Iyg€ &,/0—0'.

It would be interesting to carefully check if a similar result like this holds for real

interpolation with functional parameter. The behaviour of entropy numbers under real
interpolation with functional parameter was obtained in [6].
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