On Some Fréchet Interpolation Spaces

JESÚS M.F. CASTILLO

Dpto. de Matemáticas, Univ. Extremadura, Avda. Elvas s/n, 06071 Badajoz, Spain

AMS Subject Class. (1980): 46A12, 46M40

Received May 15, 1991

A basic knowledge about locally convex spaces can be obtained from [9], about operator ideals from [11], and about both together from [8]. We follow those books concerning notation.

Let E be a locally convex space and \mathscr{S} an operator ideal. We say that E is generated by \mathscr{S} if for any neighborhood of 0, U there is another neighborhood of 0, $V \subset U$, such that the canonical linking map $\hat{T}_{VU} \in \mathscr{S}(\hat{E}_V, \hat{E}_U)$.

The class of all locally convex spaces generated by \mathscr{N} is denoted by $\operatorname{Groth}(\mathscr{N})$. It is a standing problem what can be said about the structure of E recovered from its pertenece to a class $\operatorname{Groth}(\mathscr{N})$. Several contributions to this problem are in previous papers of the author [3], [4], [5].

In this paper a special case of the problem is considered: starting with a continuous injection $I: X \longrightarrow Y$ between Banach spaces, we form a reduced projective limit of real interpolation spaces, obtaining in this way a Fréchet (non Banach) space, which we call $[X,Y]_{(\theta),q}$. We study relationships between $I \in \mathscr{M}$ and $[X,Y]_{(\theta),q} \in Groth(\mathscr{M})$ for several choices (unconditionally converging, weakly compact, compact, completely continuous and nuclear operators) of the ideal \mathscr{M} .

Let us consider a couple of Banach spaces X, Y linked by a continuous injection with dense range $I: X \longrightarrow Y$. The pair (X, Y) can be considered an interpolation couple. See [2] for basic facts about interpolation. When $0 < \theta < 1$, and $1 \le q \le +\infty$, the real interpolation method gives a Banach intermediate space $[X, Y]_{\theta,q}$. When $\theta' < \theta$, the inclusion I induces a continuous injection $I_{\theta'\theta}: [X, Y]_{\theta',q} \longrightarrow [X, Y]_{\theta,q}$.

Let us fixe q, and take the projective limit

$$[X,Y]_{(\theta),q}:=\varprojlim I_{\theta'\theta}\Big[[X,Y]_{\theta,q}\Big]$$

with respect to the maps $I_{\theta'\theta}$.

The space $[X,Y]_{(\theta),q}$ is, to an extent, a generalization of some interesting spaces. If, for instance, we take $X=\ell_p$ with the natural inclusion $\ell_p \longrightarrow \ell_m$, then $[\ell_p,\ell_m]_{(\theta),q} = \cap_{\epsilon>0} \ell_{p+\epsilon}$.

The question to be answered in this paper is to what extent " $[X,Y]_{(\theta),q} \in Groth(\mathscr{A})$ " and " $I \in \mathscr{A}$ " are equivalent. Firstly notice that if $[X,Y]_{(\theta),q} \in Groth(\mathscr{A})$, then not only $I \in \mathscr{A}$ but even $I \in \mathscr{A}^n$ for all n due to an obvious factorization

$$X \xrightarrow{I} Y$$

$$[X,Y]_{(\theta),q}$$

$$[X,Y]_{\theta',q} \longrightarrow [X,Y]_{\theta,q}$$

wich implies that

LEMMA 1.
$$[X,Y]_{(\theta),q} \in \mathscr{A} \Rightarrow I \in \cap_{n \in \mathbb{N}} \mathscr{A}^n$$
.

For this reason we should choose idempotent operators ideals \mathcal{A} .

When $\mathcal{M} = \mathcal{W}$ (weakly compact operators) or \mathcal{K} (compact operators) then it is a simple rewarding of some results of Beauzamy, joint to the "reiteration theorem", that

PROPOSITION 2. Let $0 < \theta < 1$, $1 < q < +\infty$. $[X,Y]_{(\theta),q}$ is a Schwartz (resp. an infra-Schwartz) space if and only if $I \in \mathcal{K}$ (resp. $I \in \mathcal{K}$).

If we choose $\mathscr{K} = \mathscr{U}$ (unconditionally converging operators, that is, those sending weakly summable sequences into summable ones), then we find some troubles. Recall that a continuous operator $T: X \longrightarrow Y$ acting between Banach spaces is in \mathscr{U} if and only if it is not an isomorphism when restricted to any subspace of X isomorphic to c_0 ; this implies, in particular that a Banach space X does not contain a copy of c_0 if and only if $\mathrm{id}(X) \in \mathscr{U}$. This later result is still true for Fréchet spaces and we give in the paper one of the several possible proofs for this fact (see also [7]).

From this we derive

PROPOSITION 3. If Y does not contain c_0 then $[X,Y]_{(\theta),q} \in Groth(\mathcal{U})$.

In particular, this implies that:

COROLLARY 4. If Y does not contain c_0 , then $[X,Y]_{(\theta),q}$ does not contain c_0 .

In the Banach space setting an analogous result was proved by Levy [10]. Since a Fréchet space not containing c_0 can have associated Banach spaces containing c_0 (just consider Köthe's example of a Fréchet Montel not Schwartz echelon space of order 0 (see [8])), Levy's result does not subsumes Corollary 4. It remains however to be know whether the hypothesis "Y does not contain c_0 " is necessary.

Finally, if we consider the operator ideal $\mathscr{A} = \mathscr{B}$ (completely continuous operators, that is, those sending weakly null sequences into norm null sequences), a trivial example, the canonical inclusion $\ell_1 \longrightarrow \ell_{\infty}$, shows that $I \in \mathscr{B}$ does not imply $[X,Y]_{(\theta),q} \in \mathscr{B}$.

For the sake of completeness we also consider in the paper the case of $\mathscr{K} = \mathscr{N}$ (nuclear operators, that is, those admitting a representation of the form $T = \Sigma_n \lambda_n x_n^* \otimes y_n$, with (x_n^*) and (y_n) bounded sequences and $(\lambda_n) \in \ell_1$). This operator ideal is not idempotent. The ideal $\mathscr{N}_0 = \bigcap_{n \in \mathbb{N}} \mathscr{N}^n$ receives the name of ideal of strongly nuclear operators, and operators in \mathscr{N}_0 are characterized by admitting a representation as above but with $(\lambda_n) \in \bigcap_{p>0} \ell_p$. We find

that:

PROPOSITION 5. $[X,Y]_{(\theta),q}$ is a nuclear space if and only if $I \in \mathcal{N}_0$.

This we prove making a simple calculation with entropy numbers:

PROPOSITION 6. If I belongs to some entropy ideal \mathcal{E}_p , then $I_{\theta'\theta} \in \mathcal{E}_p/\theta - \theta'$.

It would be interesting to carefully check if a similar result like this holds for real interpolation with functional parameter. The behaviour of entropy numbers under real interpolation with functional parameter was obtained in [6].

REFERENCES

- B. BEAUZAMY, Espaces d'Interpolation Réels: Topologie et Géometrie, in "Lect. Notes in Math.", Vol. 666, Springer, Berlín, 1978.

 J. BERGH AND J. LÖFSTROM, "Interpolation Spaces. An Introduction", Springer, Berlín, 1976.
- JESÚS M.F. CASTILLO, On Grothendieck space ideals, Collectanea Math. 39(1), 1988, 67-82.
- JESÚS M. F. CASTILLO, On the structure of G-spaces, Colloquium Math. (to appear).
- JESÚS M. F. CASTILLO, Sums and products of Hilbert spaces, Proceedings of the AMS 107(1), 1989, 101-105.
- JESÚS M.F. CASTILLO, Factorization of entropy ideals: Proportional case, Portugaliae Math. (to 6. appear).
- J. C. DÍAZ AND J. A. LÓPEZ MOLINA, Projective tensor products of Fréchet spaces, Proc. 7. Edinburgh Math. Soc. (to appear).
- H. JUNEK, "Locally Convex Spaces and Operator Ideals", Teubner-Texte 56, Leipzig, 1983.
 G. KÖTHE, "Topological Vector Space I", Springer, 1969.
- M. LEVY, L'espace d'interpolation réel $(A_0,A_1)_{\theta,q}$ contient ℓ_p , CRAS 289, 1979, A675 A677. A. PIETSCH, "Operator Ideals", North Holland, Amsterdam, 1980. 10.