Absolutely (∞,p) Summing and Weakly-p-compact operators in Banach spaces

Jesus M.F.Castillo

Departamento de Matematicas. Universidad de Extremadura. Avda de Elvas s/n. 06071 Badajoz. España (Spain).

AMS (1980) Clas Number: 46B20, 46B25, 47B10

A sequence (x_n) in a Banach space X is said to be weakly-p-summable, $1 \le p < +\infty$, when for each $x^{\bullet} \in X^{\bullet}$, $(x^{\bullet}x_n) \in \ell_p$. We shall say that a sequence (x_n) is weakly-p-convergent if for some $x \in X$, (x_n-x) is weakly-p-summable.

Lemma The following statements regarding a formal series $\boldsymbol{\Sigma}_n \boldsymbol{x}_n$ in a Banach space are equivalent:

- 1. $\Sigma_n x_n$ is weakly-p-summable, $1 \le p < +\infty$
- 2. There is a C>0 such that for any $(t_n) \in I_{p^*}$

$$\sup \ \| \ \textstyle \sum_{k=1}^{k=n} t_k x_k \ \| \ \leqslant \ C \ \| (t_n) \|_p \text{.}$$

- 3. For any $(\mathbf{t}_n) \in \mathbf{l}_{p^*}$, $\Sigma_n t_n x_n$ converges
- 4. There is a C such that for any finite subset Δ of $\mathbb N$ and any (θ_i) belonging to the unit ball of 1_p , we have $\|\sum_{a\in A}\theta_ix_i\| \leqslant C$

In the existing literature weakly-p-summable sequences have appeared under various names: part 2. says that weakly-p-summable sequences are those admitting an upper- ℓ_p -estimate; part 3. says that they are the p-Hilbertian sequences.

Part 2 identifies the space $\ell_p^{\mathbf{w}}(X)$ of weakly-p-summable sequences in X with the space $\mathfrak{L}(\ell_p,X)$, which is a classical result due to Grothendieck.

The ideal $\Pi_{\omega,p}$ of absolutely (∞,p) summing operators was introduced in [C1], an it could be considered as a limit case of the classical (q,p)-summing operators, though our theory has nothing to see with the theory of (q,p) summing operators:

We say that an operator $T:X \longrightarrow Y$ is (∞,p) summing if it transforms weakly-p-summable sequences into norm null sequences.

They admit the following equivalent formulation:

Proposition. Id(X) $\in \Pi_{\omega,p}$ if and only if $\mathfrak{L}(1_{p^*},X) = \mathfrak{K}(1_{p^*},X)$

For p=1, it can be proved that $\Pi_{\infty,1}=\mathfrak{U}$, the ideal of unconditionally converging operators. For p \geqslant 1, $\Pi_{\infty,p}$ forms an injective, non surjective and closed operator ideal.

Weakly-p-compact operators (\mathfrak{W}_p) were also introduced in [C1] as a gradation of the class of weakly compact operators. We say that an operator $T:X\longrightarrow Y$ is weakly-p-compact if from the image of each bounded sequence in X it is possible to extract a weakly-p-convergent subsequence.

For p>1, B_p is an injective and surjective, not closed, operator ideal.

We do not know whether ideals $\Pi_{\omega,p}$ and \mathfrak{B}_p , $1 , are idempotent, or even whether a Davis-Figiel-Johnson-Pelczynski factorization holds. <math>\mathfrak{B}_1$ and $\Pi_{\omega,1}$ are not idempotent.

It turns out that \mathfrak{B}_p and $\Pi_{\omega,p}$ are, in a certain sense, "dual" notions: $\Pi_{\omega,p} \circ \mathfrak{B}_p = \hat{x}$. Thus, the heart of the proof of the above proposition is:

Proposition 1. $Id(\ell_p) \in \mathfrak{W}_{p^*}$, $1 \le p \le +\infty$.

Here we present an outline of the general theory and some applications, mainly to operators acting on $L_{\rm p}.$ For example:

Proposition 2. $Id(X) \in \Pi_{\omega,2}$ if and only if $\mathfrak{L}(L_p,X) = \mathfrak{K}(L_p,X)$ for any (some $p \geqslant 2$). For r > 2, $Id(X) \in \Pi_{\omega,r}$ if and only if $\mathfrak{L}(L_r \cdot ,X) = \mathfrak{K}(L_r \cdot ,X)$

on the basis of which is:

Proposition 3. Let $1 \le p \le \infty$. $Id(L_p) \in \mathbb{D}_{(type\ L_p)^*}$; $Id(L_p) \in \Pi_{\infty,r \le (cotype\ L_p)^*}$

The connection with the type and cotype is not casual:

Proposition 4. Let X be a Banach space of cotype q. Then $Id(X) \in \Pi_{\omega,r}$ for all $r < q^*$. If X is reflexive, of type p, and has an unconditional basis, then $Id(X) \in \mathfrak{B}_{p^*}$.

Let us show some applications:

Proposition 5. Let $1 \le p \le 2$. Let X be a closed subspace of $L_p(\mu)$. Then X contains a copy of ℓ_p if and only if X* contains a copy of ℓ_p .

and also:

Proposition 6. Let 1<p<+∞. For any Banach space X:

$$\Pi_{\infty,(\text{cotype }L_p)}(X,L_p) = \{\ell_{\text{cotype }L_p}\}$$
-strictly singular operators

which complements L.Weis's results about characterizations of strictly singular operators in L_p -spaces.

"Subsequence principles" of the kind considered in [Ch] can be considered as a statement of the form $Id(H) \in \mathbb{B}_2$, where H is any Hilbert space.

Since $Id(L_p) \in \mathbb{Z}_2$ when $p \geqslant 2$, the Grothendieck-Pietsch factorization theorem implies that p-summing operators are weakly-2-compact. So we have:

Proposition 7. Let X be a Banach space of finite cotype. Then $\mathfrak{B}(C(K),X) \subseteq \mathfrak{B}_2(C(K),X)$

Applications to Dunford-Pettis properties shall take place in the next report.

References

- [C1] JMF.Castillo. On weak-p-summability in vector valued sequence spaces (to appear)
- [C2] JMF.Castillo. On Banach spaces X such that $L(L_p, X)=K(L_p, X)$.(to appear)
- [Cj] SD.Chatterji. in "Probability and Analysis". Lecture Notes in Mathematics 1206. Springer. 1985
- [D] J.Diestel. Sequences and Series in Banach spaces.GTM 92.Springer.1984.
- [P] A.Pietsch. Operator Ideals. North Holland. 1980
- [S] F.Sanchez. Tesis Doctoral. Universidad de Extremadura.
- [Si] I.Singer. Bases in Banach spaces I. Springer 1970.
- [W] L.Weis. On perturbations of Fredholm operators in $L_p(\mu)$ -spaces. Proceedings of the AMS 67,2,(1977) 287-292