$\underline{\text{SOME}} \ \ \underline{\text{GROTHENDIECK'S}} \ \ \underline{\text{PROBLEMS}} \ \ \underline{\text{IN}} \ \ \underline{\text{THE}} \ \ \underline{\text{CONTEXT}} \ \ \underline{\text{OF}} \ \ \underline{\text{THE}} \ \ \alpha_{pq} - \underline{\text{TENSOR}} \ \ \underline{\text{PRODUCTS}}$

By J. A. López Molina y M. J. Rivera Ortún

Departamento de Matemática Aplicada Universidad Politécnica. 46021 Valencia (España). Partially supported by the D.G.I.C.Y.T. PS 88-0050

A la memoria de José Maria García Lafuente

The positive and negative results related to the problem of topologies of Grothendieck [2] have given many information on the projective and injective tensor products of Fréchet and DF-spaces. The pourpose of this paper is to give some results about analogous questions in α_p -Lapresté's tensor products [4, chapitre 1] and in spaces of dominated operators Pietsch [5] for a class of Fréchet spaces having a certain kind of decomposition studied by Bonet and Díaz [1] called T-decomposition. After that we present the main results in order to give positive answers to the following problems:

P1) To localize the bounded sets in E $_{\alpha}^{-}$ \otimes F.

P2) If E an F are DF-spaces. Is E $_{\alpha}, \otimes F$ a DF-space? $_{pq}$

The notation for locally convex spaces is standard. If E is a locally convex space, E'denotes its strong dual, $\mathcal{U}_{o}(E)$ is a basis for the filter of absolutely convex neighbourhoods of zero. Given $U \in \mathcal{U}_{o}(E)$, $E_{(U)}$ is the corresponding normed quotient space, and P_{U} the quotient map. If A is a disk in E, E_{A} represents the linear span of A with the usual normed topology, and $Q_{A}: E_{A} \to E$ the canonical injection. For every $1 \le p \le \infty$, we denote by B_{D} the unit ball of ℓ_{P} .

<u>Definition 1.-</u> If α is a tensor norm in the class of normed spaces and E,F are locally convex spaces, the α -topology in E®F is generated by the family of seminorms $\left\{\alpha_{U,V}, U \in \mathcal{U}_0(E), V \in \mathcal{U}_0(F)\right\}$ such that $\alpha_{UV}(z; E \otimes F) = \alpha((P_U \otimes P_V)(z); E_{(U)} \otimes F_{(V)})$ for every $z \in E \otimes F$. We denote by $E \otimes F$ the space $E \otimes F$ endowed with the α -topology.

<u>Definition</u> 2.- If U ∈ $\mathcal{U}_0(E)$, 1 ≤ p ≤ ∞ , let us consider

 $\ell_{p}(E) = \left\{ (x_{i}) \in E^{N}; \ \forall U \in \mathcal{U}_{o}(E), \ \varepsilon_{pU}((x_{i})) = \sup_{x' \in U} \left(\sum_{i=1}^{\infty} |\langle x_{i}, x' \rangle|^{p} \right) \right\}^{1/p} < \infty \right\}$

with the usual modifications for p = ∞ ,endowed with the topology generated by the family of seminorms $\{ \epsilon_{nU} , U \in \mathcal{U}_0(E) \}$

We denote by $\ell_p^o(E)$ the subspace of $\ell_p(E)$ whose elements are limit in $\ell_p(E)$ of finitelly non-zero sequences.

<u>Proposition 1</u>: If E is a locally convex space then
a) If E is complete, $\ell_p(E)$ is complete. b) $\ell_p^o(E)$ is a closed subspace of $\ell_p(E)$. c) If E is complete then $\ell_p \otimes E$ and $\ell_p^o(E)$ are isomorphics.

 $\begin{array}{l} \underline{\text{Definition 3}} : \text{If E and F are locally convex spaces, we define} \\ \mathcal{A}(\text{E},\text{F}) = \left\{ \begin{array}{l} \text{T } \in \mathcal{L}(\text{E},\text{F}) \ ; \ \exists \ \text{U} \in \ \mathcal{U}_0(\text{E}), \ \exists \ \text{A diskin F }, \ \exists \ \text{T}_0 \in \ \mathcal{L}(\text{E}_{(\text{U})},\text{F}_{_{A}}); \\ \hat{\text{T}}_0 \in \mathcal{A}(\hat{\text{E}}_{(\text{U})},\hat{\text{F}}_{_{A}}), \quad \text{T} = \text{Q}_{_{A}}. \ \text{T}_0. \ \text{P}_{_{U}} \end{array} \right\}$

We remark that this definition corresponds to the minimal extension of the ideal A to the class of locally convex spaces in the sense of Pietsch [5,29.5] and also to the strong analogous extension of Junek [3,5.3].

<u>Proposition 2</u>: If F is a quasibarrelled locally convex space, then (E \otimes F)' = α ' $\mathcal{A}(E,F'_{b})$ algebraically for every locally convex space E.

Now we consider the α_{pq} Lapresté's tensor norms, with $1 < p,q < \infty$ and 1/p + 1/q > 1. We denote by \mathcal{A}_{pq} the maximal operators ideal associated to α'_{pq} (the Pietsch's (q'p')-dominated operators ideal, see $[5,\ 17.4]$). For E,F locally convex spaces, we are going to define a topology in $\mathcal{A}_{pq}(E,F)$. We begin remarking that if E and F are normed spaces and $z \in E \circ F$ there are $(\lambda_i) \in \ell_r$, $(x_i) \in \ell_q^o$, (E), $(y_i) \in \ell_p^o$, (F) such that $z = \sum\limits_{i=1}^n \lambda_i x_i \circ y_i$, and $\alpha_{pq}(z) = \inf \left\{ \pi_r((\lambda_i)) \varepsilon_q, ((x_i)) \varepsilon_p, ((y_i)); (\lambda_i) \in \ell_r, (x_i) \in \ell_q^o, (E), (y_i) \in \ell_p^o, (F), z = \sum\limits_{i=1}^n \lambda_i x_i \circ y_i \right\}$, see Lapresté [4 proposition 1.3]. Then we define

 $\frac{\text{Theorem 1}}{\alpha_{pq}'}: \text{If E,F are quasibarreled , then E \otimes F} \quad \text{is a topological subspace} \\ \frac{\alpha_{pq}'}{\alpha_{pq}'} \quad \text{of } (\mathcal{A}_{pq}(E_b',F), BB_{pq}). \text{ Moreover if E is reflexive or verifies the density condition then E'_b \otimes F is a topological subspace of } (\mathcal{A}_{pq}(E,F),BB_{pq}).$

The following definition has been given in [1, def. 1]:

<u>Definition</u> $\underline{5}$.- A Fréchet space E with an increasing fundamental sequence of seminorms ($\|.\|_k$) is called a *decomposable T -space* if for every real sequen-

ce $(a_k)_{k\in\mathbb{N}}$, $0 < a_k \le 1$ $\forall k \in \mathbb{N}$, we can find a sequence $(P_k)_{k\in\mathbb{N}} \subset \mathcal{L}(E,E)$ such that (T1) $P_i P_j = \delta_{ij} P_i$. (T2) $x = \sum_{k\in\mathbb{N}} P_k(x)$, $\forall \ x \in E$. (T3) $\|P_k(x)\|_k \le \|x\|_k$, $\forall x \in E$, $\forall k \in \mathbb{N}$ $k \ge 2$. (T5) $\|.\|_k$ defines the topology induced by E in $P_k(E)$.

Theorem 2.- If E and F are Fréchet decomposable T-spaces and M is a bounded set in $E_{\alpha} \otimes F$, there exist bounded sets A and D in ℓ_q^o , (E) and ℓ_p^o , (F) respectitively such that M $\subset \overline{\Gamma}(H)$, where

titively such that
$$M \subset \overline{\Gamma}(H)$$
, where
$$H = \left\{ z \in E_{\alpha} \otimes F \; ; \; z = \sum_{i \in N} \lambda_i x_i \otimes y_i; \; (\lambda_i) \in B_r \; , \; (x_i) \in A, \; (y_i) \in D \right\}$$

<u>Proposition</u> 4.- If E and F are Fréchet decomposable T-spaces, then the BB $_{pq}^-$ topology on $\mathcal{A}_{pq}^-(E,F_b')$ coincides with the strong topology in this space corresponding to the duality $(E_{\alpha} \otimes F)' = \mathcal{A}_{pq}^-(E,F_b')$.

<u>Theorem 3.- If E is a Fréchet decomposable T-space and X a Banach space then</u> $A_{pq}(E,X)$ with the BB -topology is a DF-space.

<u>Proposition 6.-</u> If E is a Fréchet decomposable T-space reflexive or having the density condition, then for every normed space G on verifies that $E'_b \overset{\otimes}{\underset{pq}{\otimes}} G$ is a DF-space and it is bornological.

Theorem 5 .- Let E and F be Fréchet decomposable T-spaces. Then E' $_b^{o}$ $_{pq}^{o}$ F' is a DF-space.

References

- 1. J. Bonet, J. C.. Díaz, The problem of topologies of Grothendieck and the class of Fréchet T-spaces, *Math Nach*. (to appear).
- 2. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires, *Mem. Amer. Math. Soc.* 16, 1955.
- 3 H. Junek, Locally convex spaces and operator ideals, Teubner-Texte, Leipzig 1983.
- J. T. Lapresté, Opérateurs sommantes et factorization à travers les espaces L^p, Studia Math. 56 (1976), 47-83.
- 5. A. Pietsch, Operator ideals, North Holland (1980).