THEOREMS OF ϵ -PSEUDOORTHOGONAL DECOMPOSITION IN NORMED LINEAR SPACES.

Sever Silvestru Dragomir

Strada Trandafirilor 60 Bl. 34 Sc. D Ap. 9 1600-BAILE HERCULANE-ROMANIA A.M.S. Class: 46B20.

Let X be a normed linear space over real or complex number field K. The following definition is a natural generalization of Birkhoff-James' orthogonality in normed linear spaces [1], [3].

DEFINITION 1. Let $\varepsilon \in [0,1)$. The element $x \in X$ will be called ε -Birkhoff-James pseudoorthogonal on the element $y \in X$ or ε -B-J-pseudoorthogonal, for short, if we have $\|x+\lambda y\| \ge (1-\varepsilon)\|x\|$ for all $\lambda \in K$. We denote this $x \perp y$ (B-J).

If A is a nonempty subset in X, then by $A^{\frac{1}{\epsilon}}(B-J)$ we denote the set of all elements which are $\epsilon - B - J - \mathrm{pseudoorthogonal}$ over A. We remark that $0 \in A^{\frac{1}{\epsilon}}(B-J)$ and $A \cap A^{\frac{1}{\epsilon}}(B-J) \subseteq \{0\}$ for every $\epsilon \in [0,1)$.

The following statement is a variant of F. Riesz' result (see e.g. [4], p. 84):

PROPOSITION 1. Let X be as above and E be its closed linear subspace. Suppose E \neq X. Then for every $\epsilon \in (0,1)$ the set $E^{\frac{1}{\epsilon}}(B-J)$ is nonzero.

Now, we can give the first ϵ -pseudoorthogonal decomposition theorem which works in normed linear spaces.

THEOREMS 1. Let X be a normed space and E be its closed linear subspace. Then for every $\varepsilon\varepsilon(0,1)$ the following decomposition holds:

$$X = E + E^{\frac{1}{\varepsilon}}(B-J).$$

Indeed, it is clear that for E≠X and x∉E, there exists an element $y_{\varepsilon} \in E$ such that $0 < d = d(x,E) < ||x-y_{\varepsilon}|| < d/(1-\varepsilon)$ and since $x_{\varepsilon} := x-y_{\varepsilon} \in E^{\frac{1}{\varepsilon}}(B-J)$ we obtain the desired representation.

A mapping [,]: $X \times X \longrightarrow K$ is called semi-inner product (s.i.p.) on linear space X if the following conditions are satisfied:

- (i) $[x,x] \ge 0$ for all $x \in X$ and [x,x] = 0 implies x = 0;
- (ii) $[\lambda x, y] = \lambda[x, y]$ and $[x, \lambda y] = \overline{\lambda}[x, y]$ for all $x, y \in X$;
- (iii) $|[x,y]|^2 \le [x,x][y,y]$ for all x,y in X;
- (iv) [x+y,z]=[x,z]+[y,z] for all x,y,z in X.

It is clear that the mapping $x \in X \longrightarrow [x,x]^{1/2} \in \mathbb{R}_+$ is a norm on X and every s.i.p. on normed space X which generates its norm is of the form: $[x,y]=\langle \widetilde{J}(y),x \rangle$ for all x,y in X where \widetilde{J} is a section of normalized dual mapping.

The following concept is a generalization in one sense of Giles' orthogonality [2]:

DEFINITION 2. Let $\varepsilon \in [0,1)$. The element $x \in X$ is called ε -Giles pseudo-orthogonal on the element $y \in X$ (relative to s.i.p. [,]) or ε -G-pseudo-orthogonal, for short, if $|[y,x]| \le ||x|| ||y||$ and we denote $x \not \in y(G)$.

If A is a nonempty subset of X, then by $A^{\frac{1}{\epsilon}}(G)$ we shall denote the set of all elements which are ϵ -G-pseudoorthogonal over A. It is easy to see that $0\epsilon A^{\frac{1}{\epsilon}}(G)$ and $A \cap A^{\frac{1}{\epsilon}}(G) \subseteq \{0\}$ for all $\epsilon \in [0,1)$.

PROPOSITION 2. Let $(X;(\ ,\))$ be an inner-product space and $\varepsilon \in [0,1)$. Then $\underset{\epsilon}{\text{ty}}(G)$ iff $x \frac{1}{\eta(\epsilon)} y(B-J)$ where $\eta(\epsilon) := 1 - (1 - \epsilon^2)^{1/2}$.

The proof follows by the properties of i.p. and we omit it.

In virtue of this fact, we can introduce the following concept.

DEFINITION 3. Let X be a normed space and [,] be a s.i.p. on it which generates its norm. The s.i.p. [,] will be called of (APP)-type if there exists a mapping $\eta:[0,1) \longrightarrow [0,1)$ (called the transition mapping) such that $\eta(\varepsilon)=0$ iff $\varepsilon=0$ and with the property that $x \frac{1}{\eta(\varepsilon)} y(B-J)$ implies $x \pm y(G)$, for all $\varepsilon \in (0,1)$.

It is clear that every i.p. on a linear space X is a s.i.p. of (APP)-type. Now, let (Ω,A,μ) be a measure space and $L^P(\Omega)$ (p>1) be the Banach space of p-integrables real functions on Ω . If we put $(y,x)_p:=\lim_{t\to 0}(\|x+ty\|_p^2-\|x\|_p^2)/2t$ for x, y in $L^P(\Omega)$, p>2, then (,)_p is a s.i.p. of (APP)-type with the transition mapping $\eta(\varepsilon):=1-[1-\varepsilon^2/(2p-3)]^{1/2}$, $\varepsilon \in [0,1)$.

PROPOSITION 3. Let X be a normed space and [,] be a s.i.p. of (APP)-type which generates its norm. If E is a proper closed linear

subspace in X then $E^{\frac{1}{\epsilon}}(G)$ is nonzero for all $\epsilon \epsilon (0,1)$.

COROLLARY. If X_p is a nonzero linear subspace in $L^p(\Omega)$ (p>2) and E_p is a proper closed linear subspace in X_p , then $E_p^{\stackrel{\leftarrow}{\mathcal E}}(G)$ is nonzero for all $\varepsilon\varepsilon(0,1)$ where $E_p^{\stackrel{\leftarrow}{\mathcal E}}(G)$ is taken in X_p .

The following ϵ -pseudoorthogonal decomposition theorem also holds.

THEOREM 2. Let X and E be as above. Then for all $\epsilon \varepsilon (0,1)$ we have the decomposition:

$$X = E + E^{\frac{1}{\varepsilon}}(G) .$$

COROLLARY. If X_P and \boldsymbol{E}_p are as above, then for any $\epsilon\varepsilon(0,1)$ we have the decomposition:

$$X_p = E_p + E_p^{\frac{1}{\varepsilon}}(G)$$
.

REFERENCES

- [1]. G. BIRKHOFF, Orthogonality in linear metric spaces. Duke Math. J., 1 (1935), 169-172.
- [2]. J.R. GILES, Classes of semi-inner-product spaces. Trans. Amer. Mat. Soc., 129 (1967), 436-446.
- [3]. R.C. JAMES, Orthogonality and linear functionals in normed linear spaces. Trans. Amer. Math. Soc., 61 (1947), 265-292.
- [4]. K. YOSIDA, Functional Analysis. Springer-Verlag, Berlin 2-nd Ed., 1968.