PROPORTIONAL FACTORIZATION OF ENTROPY IDEALS

bу

Jesús M.F. Castillo

Departamento de Matematicas. Universidad de Extremadura. Avda de Elvas s/n. 06071 Badajoz. España (Spain).

AMS (1980) Class: 47A68, 47B05, 47D30

A classical paper of A.Pietsch [P] establishes the identities $\mathfrak{A}_r = \mathfrak{A}_p \circ \mathfrak{A}_q$ and $\mathfrak{C}_r = \mathfrak{C}_p \circ \mathfrak{C}_q$ ($r^{-1} = p^{-1} + q^{-1}$) for Approximation and Entropy ideals.

For Approximation ideals there is no difficulty in extending the formula above to Lorentz spaces obtaining: $\mathfrak{A} = \mathfrak{A} \circ \mathfrak{A}$ when $p^{-1} = p_0^{-1} + p_1^{-1}$ and $q^{-1} = q_0^{-1} + q_1^{-1}$. However for Entropy ideals we only obtain:

$$\mathfrak{E}_{pq} = \mathfrak{E}_{p_0, q/\theta} \circ \mathfrak{E}_{p_1, q/1-\theta} , \tau = p/p_0$$

This is what we called in [C] a prportional factorization. It is clear that not all factorizations are proportional.

Wheter or not the general factorization formula:

$$\mathfrak{E}_{pq} = \mathfrak{E}_{p_0q_0} \circ \mathfrak{E}_{p_1q_1} \ , \qquad p^{-1} = p_0^{-1} \ + p_1^{-1}, \ q^{-1} = q_0^{-1} \ + q_1^{-1},$$

holds, it is still unknown.

In this paper we extend the proportional factorization formula to Lorentz-Marcinckiewicz entropy ideals $\mathfrak{E}_{\varphi,q}$, φ a suitable function and $0 < q < +\infty$. The first point is to establish the meaning of the word "proportional" for generalized entropy ideals: In the classical case, the initial function is $\varphi(t) = t^{1/p}$, and the admissible factorizations are $\varphi = \varphi_0 \cdot \varphi_1$ with $\varphi_1(t) = t^{1/p_1}$, i = 0, 1, and $p^{-1} = p_0^{-1} + p_1^{-1}$. The value τ is obtained as p/p_0 , and the adequate space to factorize the initial operator is an intermediate space of K and J types $\chi(t) = t^0$. The connection between τ and those functions is:

$$\tau = \alpha_{\overline{\chi}} = \beta_{\overline{\chi}} = \frac{\alpha_{\overline{\psi}_0}^-}{\alpha_{\overline{\psi}}^-} = \frac{\beta_{\overline{\psi}_0}^-}{\beta_{\overline{\psi}}^-}$$

where α and β are the so-called Boyd indices (see [G]).

In accordance with this we shall impose the restriction $\alpha = \beta_-$ to the initial function, and if $\varphi = \varphi_0 \cdot \varphi_1$ is an admissible factorization of φ then $\alpha_- = \beta_-$.

 φ_0 φ_0 Now, a simple comparison (see also the diagram at the the end of this note) gives that the intermediate function has to be $\chi = \varphi_0 \circ \varphi^{-1}$. Under the

preceeding hypotheses it can be proved that $\alpha_{\overline{\chi}}=\beta_{\overline{\chi}}=\frac{\alpha_{\overline{\phi}_0}}{\alpha_{\overline{\phi}}^-}$. We call τ to this value. We have:

Theorem 1. Assume the preceeding hypotheses but q<+ ∞ and $0<\alpha$ _ < α _. Then if $T\in \mathfrak{C}_{\varphi,q+\epsilon}$ for all $\epsilon>0$ there exist $T_0\in \mathfrak{C}_{\varphi_0,(q/\tau)+\epsilon}$ for all $\epsilon>0$ and $T_1\in \mathfrak{C}_{\varphi_1,(q/1-\tau)+\epsilon}$ for all $\epsilon>0$ such that $T=T_1\circ T_0$.

Obviously, when we let $q{=}{+}\omega$ most of the difficulties disappear and we have:

Theorem 2. Assume q=+
$$\infty$$
. Then if $0<\alpha_{\overline{\phi}_0}<\beta_{\overline{\phi}}$, $\mathfrak{E}_{\phi,\infty}=\mathfrak{E}_{\phi_0,\infty}\circ\mathfrak{E}_{\phi_1,\infty}$.

Note that in this case "proportional" is meaningless and thus we do not need to ask $\alpha_-=\beta_-$ nor $\alpha_-=\beta_-$. φ_0 φ_0

The behaviour of the entropy numbers under real interpolation with functional parameter is calculated in order to provide Th1 and Th2:

Assume that $T: X_0 \longrightarrow X_1$ is an interpolation couple and X is an intermediate space. We call T_0 and T_1 to the induced operators $X \longrightarrow X$ and $X \longrightarrow X_1$. We have:

	T ∈ 𝒆 _{φ,∞}	T ∈ € _{φ,q}
If X is of K-type χ	$T_1 \in \mathfrak{E}_{ ho,\infty}$ where $ ho = arphi/\chi(arphi)$	$T_1 \in \mathfrak{E}_{\rho,q/1-\tau}$ where $\rho = \varphi/\chi(\varphi)$ and $\alpha < \tau < 1$
If X is of J-type χ	$T_0 \in \mathfrak{E}_{ ho,\infty}$ where. $ ho = \chi(arphi)$	$T_0 \in \mathfrak{E}_{ ho,q/ au}$ where $ ho = \chi(\varphi)$ and $0 < \tau < \beta$ φ

References

- [C] Jesús M.F.Castillo. Factorization of Entropy Ideals: Proportional case.

 Portugaliae Mathematica (to appear)
- [G] J.Gustavsson. A function parameter in connection with interpolation of Banach spaces. Math. Scand. 42 (1978) 289-305.
- [P] A.Pietsch.Factorization theorems for some scales of operator ideals. Math. Nachr.97 (1980) 15-19.

THIS PAPER IS TO APPEAR IN PORTUGALIAE MATHEMATICA