EXTRACTA MATHEMATICAE 4, n.3, 154-156 (1989)
NONEXISTENCE OF NONTRIVIAL SOLUTIONS TO SOME NONLINEAR
VOLTERRA EQUATIONS.

W. Okrasinski
Institute of Mathematics. Wroclaw University. Pl. Grunwaldski
2-4., 50-384 Wroclaw. Poland.

AMS (1980 ) Class Number: 45D05, 45G10
The nonlinear Volterra integral equations

X
(1) u(x)=§O k(x-s)g(u(s))ds (x°0),

b'd
where Kk is a nonnegative function such that f k(s)ds>0 for

x>0 and g is concave increasing function sua% that g(0)=0,
in some physical problems appears (seel4|). With respect to a
physical meaning of (1) we see for nontrivial solutions to
(1). A function u is the nontrivial solution if it is conti-
nuous and positive on an interval [0,5] (X>O). Let us note
that (1) has trivial solution u=0. Nontrivial solutions can be

found not for all k and g.

S

Some sufficient and necessary condi
tions for the existence of nontrivial solutions to (1) can be
-found in Gripenberg's paper [3 ] and its extensions (seell],
|4], |5]). In physical applications the function g has usually
the form nP(p €(0,1)) (seel4|). In the case of such g suffi-
cient conditions presented in |4| gnarantee the existence of
nontrivial solutions for kernels k(x)2C exp(- %“)(«e(o,l),c>o)
On the other side it is known that nontrivial solutions exist
for functipns k satisfying this last condition for any %,>0.
(seel2|). Here we want to find such kernels k for which equa-
tion (1) with g(u):up(pe(o,l)) has not nontrivial solutions.

we can show the following lemma.

Lemma. Let k:k%]]——'b,+w) be an increasing absolutely conti-
nous function such that k(x)»0 for x>0 and g:[O,*@—————aE),+w)
be a concave increasing continuous function such that g(0)=0
and g(u)/u — +o as w—» O+, If equation (1) has a nontri-
vial solution u then u—l exists and is a concave increasing

function. Moreover

(2) u_l(X))K'l(X)+u_l(g"l(X))
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on an interval [0,5](570) (K—1 denotes the inverse function to
x
K(x)= S k(s)ds).
0

Corollary. If equation (1) has a nontrivial solution u then

-1 -1, -

wliooy Lok g ™))
n=0

for x€[0,8]) (920), where (g—l)n denotes the superposition of

g—l n times, (g_l)o(x)=x, etc. To prove (3) we successively
apply mequality (2). In the m-th step we get
m-1 :
- -1 -1 -1 -1
wleor 7k He HM )+ w (g7 ™x)) (xeD,d1)
n=o

Since ufl is increasing continuous such that LC1(0)=O and g—l
is convex such that g—l(x)Sx then dl((g_l)m(x))ﬁo on [O,é-]

as m —> %, The Corollary is proved.

‘Example. Let K(x)=exp(-exp %u) (x%1). We consider the equation
X

(4) u(x)= k(x—s)[u(s)]pds (pe(O,l))
0]

with the k=K'. We can easy compute that K—l(x)=l/[log 1og(1/x)]%
- - R\ )
g 1(x)=£@ and (g l)“(x):xaPE . We get

K1 ((g7H)™(x))=1/[n 1log (%) + log log (;1()] 5

If equation (#) has a nontrivial solution u then by (3) we
get 00

o 1
(5) Tlx)% 2o 1/[n log(1/p)+log log(1/x)) /™

n=o
for xe[p,sl . But if we fix Xx¢€ ELS] then we see the series in
(5) is divergent to +® Dbecause of its equivalence with the
series 1/n”% (x%1). It means equation (4) has not nontrivial

solutions.

This last example shows that keonels k satisfying nequa-
lity k(x) € C [ exp-exp(l/x")l (¢)0,¥71) have not any physical
meaning.
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