NONEXISTENCE OF NONTRIVIAL SOLUTIONS TO SOME NONLINEAR VOLTERRA EQUATIONS.

W. Okrasinski

Institute of Mathematics. Wroclaw University. Pl. Grunwaldski 2-4. 50-384 Wroclaw. Poland.

AMS (1980) Class Number: 45D05, 45G10

The nonlinear Volterra integral equations

(1)
$$u(x) = \int_{0}^{x} k(x-s)g(u(s))ds$$
 (x)0),

where k is a nonnegative function such that $\int k(s)ds > 0$ for x > 0 and g is concave increasing function such that g(0)=0, in some physical problems appears (see |4|). With respect to a physical meaning of (1) we see for nontrivial solutions to (1). A function u is the nontrivial solution if it is continuous and positive on an interval [0,5] (5>0). Let us note that (1) has trivial solution u=0. Nontrivial solutions can be found not for all k and g. Some sufficient and necessary condi tions for the existence of nontrivial solutions to (1) can be found in Gripenberg's paper [3] and its extensions (see | 1|, |4|, |5|). In physical applications the function g has usually the form $n^p(p \epsilon(0,1))$ (see |4|). In the case of such g sufficient conditions presented in |4| gnarantee the existence of nontrivial solutions for kernels $k(x) \ge \exp(-\frac{1}{x^{\alpha}})(\alpha \in (0,1),C>0)$ On the other side it is known that nontrivial solutions exist for functions k satisfying this last condition for any 4>0. (see |2|). Here we want to find such kernels k for which equation (1) with $g(u)=u^p(p \epsilon(0,1))$ has not nontrivial solutions. we can show the following lemma.

Lemma. Let $k: [0,1] \longrightarrow [0,+\infty)$ be an increasing absolutely continuous function such that k(x) > 0 for x > 0 and $g: [0,+\infty) \longrightarrow [0,+\infty)$ be a concave increasing continuous function such that g(0) = 0 and $g(u)/u \longrightarrow +\infty$ as $u \longrightarrow 0+$. If equation (1) has a nontrivial solution u then u^{-1} exists and is a concave increasing function. Moreover

(2)
$$u^{-1}(x) > K^{-1}(x) + u^{-1}(g^{-1}(x))$$

on an interval [0,5](5,0) (K⁻¹ denotes the inverse function to $K(x) = \int_0^x k(s)ds$).

Corollary. If equation (1) has a nontrivial solution u then

$$u^{-1}(x) \gg \sum_{n=0}^{\infty} K^{-1}(g^{-1})^n(x)$$

for $x \in [0, \delta]$ (5,0), where $(g^{-1})^n$ denotes the superposition of g^{-1} n times, $(g^{-1})^0(x)=x$, etc. To prove (3) we successively apply mequality (2). In the m-th step we get

$$u^{-1}(x) \geqslant \sum_{n=0}^{m-1} K^{-1}((g^{-1})^n(x)) + u^{-1}((g^{-1})^m(x)) (x \in [0,\delta])$$

Since u^{-1} is increasing continuous such that $u^{-1}(0)=0$ and g^{-1} is convex such that $g^{-1}(x)\leqslant x$ then $u^{-1}((g^{-1})^m(x))\Longrightarrow 0$ on $[0,\delta]$ as $m\longrightarrow \infty$. The Corollary is proved.

Example. Let $K(x) = \exp(-\exp(\frac{1}{x^{\alpha}}))$ ($\alpha > 1$). We consider the equation

(4)
$$u(x) = \int_{0}^{x} k(x-s) [u(s)]^{p} ds \quad (p \in (0,1))$$

with the k=K'. We can easy compute that $K^{-1}(x)=1/[\log\log(1/x)]\frac{1}{\kappa'}$ $g^{-1}(x)=x'P$ and $(g^{-1})^n(x)=x'P$. We get

$$K^{-1}((g^{-1})^{n}(x))=1/[n \log (\frac{1}{p}) + \log \log (\frac{1}{x})] \frac{1}{x}$$

If equation (\P) has a nontrivial solution u then by (3) we get

(5)
$$u^{-1}(x) \gg \sum_{n=0}^{\infty} 1/[n \log(1/p) + \log \log(1/x)]^{1/\alpha}$$

for $x \in [0, \delta]$. But if we fix $x \in [0, \delta]$ then we see the series in (5) is divergent to $+\infty$ because of its equivalence with the series $1/n^{1/\kappa}$ ($\alpha > 1$). It means equation (4) has not nontrivial solutions.

This last example shows that keonels k satisfying nequality $k(x) \leqslant C$ [$exp-exp(1/x^{\vee})$ | (c)0, %1) have not any physical meaning.

REFERENCES

- |1| P.J. Bushell, W. Okrasinski. Uniqueness of solutions for a class of nonlinear Volterra equations with convolution ker nel. Math. Proc. Camb. Phil. Soc. 106 3(1989).
- |2| P.J. Bushell, W. Okrasinski. Nonlinear Volterra integral equation with convolution kernel (to apper in J. London. Math. Soc.).
- |3| G. Gripenberg. Unique solutions of some Volterra integral equations. Math. Scand. 48(1981).
- |4| W. Okrasinski. Nonlinear Volterra equations and physical applications. Appendix. Extracta Math. 4. 2(1989).
- |5| W. Okrasinski. Remarks on nontrivial solutions to a Volterra integral equation (to appear in Math. Meth. in the Appl. Sci.).