NONTRIVIAL SOLUTIONS TO NONLINEAR VOLTERRA EQUATIONS

W. Okrasinski

Institute of Mathematics. Wroclaw University. Pl. Grunwaldski 2-4. 50-384 Wroclaw. Poland.

AMS (1980) Class Number: 45D05, 45G10

In some physic al problems the following nonlinear Volt $\underline{\underline{e}}$ rra equations

(1)
$$u(x) = \int_{0}^{x} k(x-s)g(u(s))ds$$

where

(k) k:(0, δ_o) \longrightarrow (0,+ ∞), (δ_o >0), is an absolutely continuous monotonous function such that $\int_0^{\delta_o} k(s)ds <+\infty$ and

(g) $g:|0,+\alpha|$ \longrightarrow $|0,+\alpha|$ is an absolutely continuous increasing function such that g(0)=0 and g(x)>0 for x>0,

are considered (see |4|). With respect to physical applications the continuous solutions u to (1) such that u(x)>0 for x>0 are interesting. These are so-called nontrivial solutions. On the base of Gripenberg's work (see |3|) we can formulate:

Theorem 1. Let <> 0. Assume:

- i) g(u)/u is continuous positive decreasing such that $g(u)/u \longrightarrow +\infty$ as $u \longrightarrow 0+$.
- ii) For each q>0 the function $u[g(u)/u]^q$ is increasing on $[0, \pmb{\delta}_q]$, $(\pmb{\delta}_q>0)$. The equation

(2)
$$u(x) = \int_{0}^{x} (x-s)^{\alpha-1} g(u(s)) ds$$

has a nontrivial solution on [0,5], (5>0) if and only if

(3)
$$\int_0^{\infty} \left[u/g(u) \right]^{1/\kappa} \frac{du}{u} (+\infty)$$

But we must emphasize that where Gripenberg's assumptions the case $g(u)=u^p$ (pe(0,1)) is not allowed. In papers |1|, |2| and |5| under weaker assumptions of g similar results to Theorem 1 are presented. At these works the case $g(u)=u^p$ (pe(0,1)) is allowed. Here we wat to present generalizations of condition (3). In all Theorems bellow K-1 will

denote the inverse function to $K(x) = \int_0^x k(s)ds$. Now we formulate two theorems with sufficient conditions for the existence of nontrivial solutions to (1).

Theorem 2. Let k be an increasing function satisfying (k) and g satisfy (g). If

(4)
$$\int_{0}^{\delta} \frac{g'(u)}{g(u)} K^{-1}(u/g(u)) du < +\infty$$

then equation (1) has a nontrivial solution an $[0,\delta](\delta>0)$.

Corollary 1. If g satisfies additionally (i) then $ug'(u) \boldsymbol{\xi} g(u)$. Suppose

(5)
$$\int_{0}^{b} K^{-1}(u/g(u)) \frac{du}{u} < +\infty$$

Then (4) is satisfied and by Theorem 2 equation (1) has a non-trivial solution.

Theorem 3. Let k be a decreasing function satisfying (k) such that $\log k$ is convex and g satisfies (g). If

(6)
$$\int_{0}^{\delta_{0}} [g(u)k \cdot K^{-1}(u/g(u))]^{-1} du < +\infty$$

Then equation (1) has a nontrivial solution on [0,5](6,0).

Now we give two theorems concerning necessary conditions.

Theorem 4. Let k be an increasing function satisfying (k) such that $\log k$ is concave and g satisfies (g). If equation (1) has a nontrivial solution then

(7)
$$\int_{0}^{\delta} \left[g(u) k \cdot K^{-1}(u/g(u)) \right]^{-1} du \leftarrow \infty$$

Theorem 5. Let k be a decreasing function satisfying (k) and g satisfying (g). If equation (1) has a nontrivial solution then

(8)
$$\int_{0}^{\delta_{0}} \left[g'(u)/g(u) \right] K^{-1}(u/g(u)) du < +\infty$$

Corollary 2. If there exists $q_0 > 1$ such that $u[g(u)/u]^{q_0}$ is increasing then $g'(u) > (1-1/q_0)$ g(u)/u (|3|). In this case if equation (1) has a nontrivial solution then

(9)
$$\int_{0}^{\mathbf{f_o}} K^{-1}(u/g(u)) \frac{du}{u} < + \omega$$

Remark 1. Let us note that in the case of $k(x)=x^{e^{-1}}$ the conditions (5), (6), (7) and (9) are equivalent to Gripenberg's condition (3). By Corollary 1, Theorems 3 and 4 and Corollary 2 we get Theorem 1. Moreover all these conditions work in the case of $g(u)=u^p$ (pe(0,1)).

Remark 2. It is known that equation (1) has a nontrivial solution in the case of $k(x)=\exp(-1/x^{e})$ (p>1) and $g(u)=u^{p}(p\epsilon(0,1))$ But our sufficient conditions do not work in this case.

REFERENCES.

- |1| P.J. Bushell, W. Okrasinski. Uniqueness of solutions for a class on nonlinear Volterra euqations with convolution kernel. Math. Proc. Camb. Phil. Soc. 106(1989).
- |2| P.J. Bushell, W. Okrasinski. Nonlinear Volterra integral equation with convolution kernel (to appear in J. London Mat. Soc.).
- |3| G. Gripenberg. Unique solutions of some Volterra integral equations. Math. Scand. 48(1981).
- |4| W. Okrasinski. Nonlinar Volterra equations and physical applications. Extracta Math. 4.2(1989).
- |5| W. Okrasinski. Remarks on nontrivial solutions to a Volterra integral equation. (to appear in Math. Meth. in the Appl. Sci).