EXTRACTA MATHEMATICAE 4, n.2, 51-80 (1989)

NONLINEAR YOLTERRA EQUATIONS
AND PHYSICAL APPLICATIONS

W.Okrasinski

Contents: Introduction
. Weighted metrics method
. Projective .metrics method

. Monotone operators method

a » LW N~

. Some particular results

1. INTRODUCTION.

Let us consider two examples leading to nonlinear Volterra integral

equations of the same form:
Example 1.1. Subsolutions of a nonlinear diffusion problem

Let the plane xOy be the impermeable base. The bottom of a
cylindrical reservoir is on this plane. We assume that the z-axis is the
axis of the reservoir. The radius of the reservoir is equal to one. Let
h(r,t) denote the height of the saturated region at distance r from the
axis of the reservoir and at the time t>0. The process of the
infiltration from the reservoir into the surrounding soil is described

by the radial Boussinesq equation (see [8],[15])

(1.1 Dth = r_lDr(rDr(hz)) for r’ and t>0
with conditions .

(1.2) h(r,0) = 0 for il

(1.3) h(1,t) =1 for t>0.

We can consider a more general equation than (1.1), namely
(1.4) Dth = Lh

where

1

(1.5) Lh = r"Dr(rDr(h“)) (1)
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It may be shown that the equation (1.5) with conditions (1.2) and
(1.3) has a unique so-called weak solution (for details see [16],[17]
and [18]).

It is important for applications that the weak solution ‘is
classical at these points (r,t): for which h(r,t).>0. Moreover it is shown
that supp h(.,t)=<1,r0(t)> for t)0 , where ro(t) is a continuous
nondecreasing function. With regards to applications it is interesting
to give some information, even approximate, about the shape and range of
the support of the function h. To get this information we can construct
an auxiliary function approximating the exact solution h from below.
This is a so-called subsolution (see [16],[17]). We can construct a
subsolution h having the form (see [41]):

172

(1.6) 2

FIOFAWI™?) ,  r=lA()]
h(r,t) = .
- 0 ) r>[A(t)]

The above function will be a subsolution if f is a suff' iciently

smooth function satisfying the problem:

(1.7) bs_l(s(fa)’)' =~ésf’ for se(b,l]
with
(1.8) f(D=0, lim_[f%(s)I’=0

s>1

and the function A satisfies the differential equation

1

(1.9) AF [——] =1,  A(0)=L
X

To solve (1.7)-(1.8) we can use the substitution
(1.10) f(s) = v(-log s)
Using (1.10) we reduce (1.7) and (1.8) to
(1.11) = %e_zxv' for x20
with conditions

(1.12) v(0)=0 and | im+[v(x°‘)1’=o
x>0

Integrating twice (1.11) and using (1.12) we- get

(1.13) vix))* = J)(‘e'zs[é- +(x-s)lv(s)ds  (xe[0,m]).
0
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If we substitute

(1.14) v(x) — e_ZX/(a_l)v(x)

into (1.13), we get

(1.15) . vx)1* = rk(x-s)v(s)ds
0

where

(L.16) k(x) = [%x]ehy(“_l).

Let us note that the trivial solution u=0 satisfies equation -
(1.15). But, with respect to a physical meaning of the problem, we are
looking for continuous solutions v of (1.15) such that v(x)>0 for x>0.

We can substitute

(1.17) v=u’®
into (1.15) to obtain
_ * 1/a
(1.18) ‘ ue) = [ kx-s)lu(s) s .
(4]

This is the nonlinear Volterra equation of convolution type.
Sometimes, for mathematical considerations, the form (1.15) is more
convenient. An equation similar to (1.15) was thoroughly studied in [15]
and [41]. Having some information about g we can give estimates of A.
Subsolutions having the form (1.16) are interesting with respect to

numerical aspects.

Example 1.2. Propagation of shock-waves in gas filled tubes

We consider as in [23] shock waves in gas filled tubes. We are
looking for the axial components of the particle velocity behind the
shock wave. We choose the coordinate system such that the x-axis is
directed along the axis of the tube. Moreover the shock-wave front
passes through the origin of the x-axis at the time t=0. Let cszco
(c°= sound speed) denote the speed of the shock-wave front. Let ts(x)
denote the time at which the shock-wave front passed the tube
cross-section referred to by x. We denote by v(x,t) the axial component
of the particle velocity behind the wave front at the point x and the
time t. This function must satisfy the following equation (see [23]):

t-t_(x)
(1.19) Dtv+csva = —(Blv+(c°—cs))va + le[ Dtv(x,t—s)k(s)ds

2
0
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where Bl, _B2 > 0 are physical parameters and the kernel k describes a
dependence between axial and radial components of the particle velocity.
At applications concerning shock-waves the kernel has usually the form

k(x)= x"r—l, (>0). Moreover the function v must satisfy the condition

(1.20) v(x,ts(x)) (cs—co)/Bl.

It describes the discontinuity of the axial velocity of the
wavefront.

We are looking for so-called asymptotic solutions of the problem

(1.19)-(1.20) having the form:
(1.21) vix,t) = v(t—ts(x)) .

Moreover we suppose that ¢ is constant. In this case we get:

S
(1.22) t(x) = x/c .
s s

Hence our asymptotic solutions will have the form:

(1.23) v(x,t) = v(t-x/cs) .

In this case the problem (1.19)-(1.20) will reduce to the following

one:

B
1

C
s

(1.24)

[[v(x)—(cs—co)/BIjz]"= BZJ:v’(x-s)k(s)ds

where v=v(x) is the unknown function such that:

(1.25) v(0) = (c ¢ )/B_ .
s 0 1
Substituting
Bzcs
(1.26) , v—> B [v-(c_-c )/B ]
into (1.24) and (1.25) we get
2)’ x
(1.27) [[v(x)] ] = I v’ (x-s)k(s)ds
0
and
(1.28) v(0) =0 .
Integrating (1.27) and using (1.28) we get
X
(1.29) C vl = I K(x-s)v(s)ds
0 h

or, after the substitution

(1.30) ’ v =u"?



we obtain

(1.31) ulx) = rk(x-s)[u(sn‘”ds xe[0,0] .
o

Nonnegative nontrivial solutions of (1.29) were considered in [23]
‘and [45].

In both examples we have reduced the considered problems to
nonlinear Volterra equations having the form (1.18). Let us note that
the trivial solution satisfies this equation. But from a physical point
of view only continuous solutions u of (1.18) or (1.31) such that
u(x)>0 for x>0 are interesting. We shall denote the class of functions
satisfying the above conditions by M. The a{m of this work is to give a
survey of the methods and results concerning the solvability of the

equation (1.18) in the class M.

Moreover we shall study more general equations that (1.18), namely
X
(1.32) u(x) = J' k(x-s)g(u(s))ds
0

where g:E;—a ﬁ+ , (§+=[0,m)), is a nondecreasing concave function such
that g(0)=0. We shall assume without loss of generality that the

equation (1.18) or (1.32) is considered on [0,1]. Moreover we assume:

k is a nonnegative measurable function on [O,1]
(k) such that

rk(s)ds >0 for xe(0,1] .
0

If it is necessary we shall make additional assumptions concerning k.

2. WEIGHTED METRICS METHOD.

In this part we shall study methods which are very useful with
respect to the problems of Examples 1.1 and 1.2. Moreover these methods
may be applied for finding approximate solutions to the considered
nonlinear Volterra equations. At first, we shall study the equation
(1.18), but is is convenient to consider it under the form (1.15).

Now we present the following theorem:

55
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Theorem 2.1. Let k satisfy assumptions (k) and
(2.1 k(x) 2 C xr'l for xe [0,1],
C >0 a constant. If veM is a solution of (1.15) then

1

- 1
(2.2) [cB [7,7—l+a]]a-lx7/(a—l) = v(x) = [ o-1

k(s)ds]
o-1
0

for xe€l[0,1], where B denotes the beta function.

To obtain the right-hand side of (2.2) we can use methods from ([35]
and [36]. For special cases the left-hand side of (2.2) was proved in
[3], [33], [34] and [35]. But to get the above formula we can apply
methods from [43]. Let 0<a<b. We denote

m = min v(x) and B°=
x€la,b]

We can show

v(x) = mn(x—a) "™ for xela,b] (n=0,1,2,...)
where

B, =« B+

n+1
m = [mnB('y,BnH)]l/u' .
It may be shown that
lim Bn= ar/(afl)

n->0m
and
-1+ 1/(a-1)
,1.,.1;: m = [B('I.Tl——)]
We get
7-1+0 Va1 1/(0-1) '
(2.3) v(x) = [B(7’T)] (x-a) for xela,bl.

Since (2.3) is true for any a and b we infer that the left-hand
side of (2.2) is true.
Now we shall consider three cases in which weighted metrics method

can be applied.
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§ 2.1. Now we assume

keC"[0,1], k(0)= ... =k""(0)=0
(kl) ’ and i
k"(x) = k"(0) on [0,1].

In this case the following inequality is satisfied:
(2.4) k(0" = k(x) = k x"
where

k = max k(x)
x€[0,1]
On the base of. (2.2) we. get
/(1)
(2.5) [kn(O)B [n+l,g]] x(n+1)/(oc—1)S vix) = kOX(n+1)/(oc I}]

if veM is a solution of (J 18). We denote by Q the set of functions from

M satisfying the inequality (2.5). Let S denote the following operator

X Ve
(2.6) S(F)(x) = [ I k(x—s)f(s)ds]

0
for feM. We .can show as in [3], [34] and [3Sj that S transforms Q into
Q. We can introduce in Q the following distance (see [3],[33],[34] and
[35]):

8%
2.7 ‘ p(v ,v.) = sup [ |v (x)-v_(x)] x et g Bx|
1’2 1 2
0<x=1 )
where
2.8) 1 sup k (x)-k (0) )

k™(0) osx=1 x

In formula (2.8) we put K™ (x)= sup k™(s) and xoe[O,l] such
s€[0,x]
that

(2.9) : E‘"’(xo) < ¥™(0)e.

Let us note that the metrics introduced by Bielecki (see [9]) are
similar in some sense ta (2.7). ]
The set Q with the metric p is a complete metric space. Having

introduced-B by the formula (2.8) we can show the following lemma:
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Lemma 2.1. Let k satisfy assumptions (kl) and B be given by (2.8). Then
for xe [0,1]

(2.10) ‘ k(x)e PX < K70 X",

The proof of this lemma is based on the inequality k(x) = ™

(xo)?<".
Next we apply a method similar to that one from [33] and obtain
(2.10) (see also [3]).
After some not so difficult computations, using (2.5) and Lemma
2.1. we get (see [3]);

Lemma 2.2. For vl, vzeQ
—(n)

k (xo)
(2.11) p(S(vl),S(vz)) = —= p(vl,vz) .
k' (0)a
™ (x)
Since ——— < 1, by the Banach fixed point theorem,. we obtain
k™ (0)a

(see [3], [33], [34] and [35D:

Theorem 2.2. Let k satisfy assumptions (kx)' Then equation (1.18) has a
unique solution v belonging to M. This solution may be found using the

method of the successive approximations in Q with respect to p.

§ 2.2. Secondly we consider (see [3])

k) kx) = x¥ 4 1)

where c>0, >0, and l(x) is a continuous nonnegative function such that
xl-7l(x) goes to O as X goes to o'
Using (2.2), in this case we get the following a priori estimate

for a solution v of (1.13) belonging to M:

1/(a-1) .
(2.12) [CB(V’%?#)] x"r/(m_1 ). v(x) =

= [(c+co)B(7,7;_ -

where ¢ = max 1l(x).
x€[0,1]



Let Ql denote the set of functions of M satisfying the above
inequality. The operator S defined by (2.6) transforms Ql into Ql. Now

we formulate the following analytical lemma ([3]):

Lemma 2.3. Let k satisfy assumptions (kl). For any £>0 a number xle(o,ll

éxists such that

(1.13) ke PX = (ere)x®™ (xel0,1D,
where ' '
(2.14) B = 1 log [Ex_w’1 max 1(x)]

! xl £1 x€[x ,1]

1
We define the following metric _

p (v ,v)= sup |v (x)v (x)|x—7/(a_”e_31x
1172 1 2
0sx=1

for vl,vzenl. The space Ql with the metric P, is a complete metric
space.

Applying Lemma 2.3. we can show ([3])

c+l
ac

Lemma 2.4. For vl,vzenl, pl(s(vl),s(vz)) = pl(vl,vz).
We can put € < cl(a-1). Using the Banach fixed point theorem we get
(I31:

Theorem 2.3. Let the kernel k satisfy assumptions (kz). Then equation
(1.18) has a unique solution v belonging to M. This solution may be

found as the limit of successive approximations in S'l1 with respect to

P

For ¥€(0,1) we can find similar results in [22]. A survey
concerning equation (1.18) will be given in [2]. Some results about the

smoothness of solutions of (1.18) are presented in [21].

§ 2.3. One can ask if the above methods may be used for more general
nonlinear Volterra equations. The example below will show that it is

possible for some cases. We consider the equation

(2.17) w(v(x)) = rk(x—s)v(s)ds , xe [0,1]
0
where

59
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w: §+ N §+ is a strictly increasing convex function,
(W) weC! (R )nC*(R,), w(0)=w’(0)=0

and .J'(l)w’(s)g1 ds < .

(In the case of equation (1.32) this last integral condition means

1

I ?3) < .)

Og

There exist constants cl,cz, 0« cls cz<c1+l such that
wl(x) wl(x) ’
(W) ——+—— = c_ and x| =2 ¢ for x>0,
+ w’(x) 2 . , 1
w’(x)

X
where wl(x)= Jw’(s)s_lds {w.
0

For w(x)=x" (a>1) the assumption (W+) is satisfied with c =c =
1/(051—1).

Let w(x)=xm+x°‘1

, where Zscx—ISal(a. After simple calculations we see
that (W+) is fulfilled for cl=1/(oc-1) and cz=1/(a1-1).

These examples show that the equation (2.17) is a generalization of
(1.18).

Moreover we assume that
(k) kel 10,11, k(x)zk(0).

We can show the following lemma:

Lemma 2.5. Let w satisfy (W) and (W+), and k satisfy (k3). If veM is a
solution of (2.17) then

(2.18) v(x) = v(x) = v(x) for xel0,1]
where
(2.i9) vix) = w ' (k(0)x)
and
(2.20) Y(x) = w-l(jxk(s)ds )
1 0

(w;1 denotes the inverse function of wl).

Let Qz denote the set of functions of M satisfying the inequality
(2.18). Let S, be the operator



61

1
(2.21) s, (N0 = w_l(J K(x-s)f(s)ds)
0

for feM.
It is easy to prove that 51: Qz —> Qz. Using simple calculations

we can show the following lemma:

Lemma 2.6. Let (W), (W +) and (ka) satisfied. For xe[0,1]

i} _
2.22) | F-venas = 5 xo0-veol .
(4] 1

Let x2€[0,1] be such that
(2.23) K(x) = — k(0) (K(x)= max k(s))
2 c +1
1 sela,x]
and let B2 be defined by

(2.24) 8- kio) cup K(8)-K(0)
sEIxz,ll

We can prove an inequality similar to (2.10), namely

(2.25) ke P2 = Kix )
for xel0,1].
Now we define the metric
(2.26) pz(vl,vz')= sup lvl(x)—vz(x)lIV(X)—!(x)rle_Bzx
x€(0,1]

for vl,vzefzz. The set 92 is a complete metric space with P,

We obtain:

Lemma 2.7. For v ,v_eQ
1722

k(x )c

< 2
(2.27) pz(Sl(vl),Sl(vz)) = k—(o—)—m PZ(VI,VZ).

Using (2.23), Lemma 2.7. and Banach fixed point theorem we get a

theorem similar to Theorem 2.2.:

Theorem 2.4. Let w satisfy (W), (W+) and k satisfy (k3). Then equation
(2.17) has a unique solution v belonging to M. This solution may be

found as a limit of successive approximations in Qz with respect to P,
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Remark 2.1. The assumption (W+) is only needed to prove that S1 is a
contraction. Assuming only (W) we can prove the existence of a solution

belonging to M.

We have a lot of open questions concerning weighted metrics method.
For example we may ask about a generalization of the above metrics. Here
we have shown how to construct these metrics only at a few particular
cases.

At the end of this part we must underline that at some physical
problems we get nonlinear integral Volterra equations of nonconvolution

type, namely

X
(2.28) vx)1* = J' k(x,s)v(s)ds  (a>1)
0

(see [15], [37]). Using similar metrics we can show the existence and
uniqueness of nonnegative nontrivial solutions. Applying some properties
of those metrics it is easy to find an approximate solution close to the
exact one. Moreover the error may be estimated. For example, the methods‘
used in [15] and [37] can be applied to the ' problems concerning
nonlinear diffusion treated at works [24], [25] and [29]. Let us note
that for the equation (2.28) another techniques may be applied (see [7],
[390.

Moreover, using weighted metrics -method, discrete nonlinear
equations similar to (1.18) may be studied (see [4], [5]).

With respect to numerical applications, the methods presented above

are convenient.

3. PROJECTIVE METRIC METHODS.

The method of Hilbert projective metrics may be applied to
different mathematical problems (see [9], [12], [28], [30], (311, [32],
[44] and [46]). Here we shall present this method only with respect to

applications to nonlinear integral equations having the form

(3.1) u(x) = rk(x—s)[u(s)]pds pe(0,1)
0

(for details see [11] and [13]).

We can show the following theorem (for a comparison see [11]):
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Theorem 3.1. Assume
(i) The kernel k satisfies (k)

(ii) There exist a function weM and constants 0<m15m2<m such that

(3.2) m1W(X) = rk(x—s)[w(s)lpds = sz(X) xe[0,1] .
1]

Then equation (3.1) has a unique continuous solution u with the
property

3.3) m wx) = ulx) = ﬁzw(x)‘ xel0,11,

were 0<m X <m z<m.

Remark 3.1. This theorem does not give any answer about if the solution
u is unique in M. In the next part we shall show that this solution is

unique.
Remark 3.2. Theorem 3.1 may be proved for any interval [0,a], o>0.

Remark 3.3. The above theorem can be extended very easily to a noncon-

volution kernel ([11]).
How to prove this theorem ?. Let Kw denote the following cone

(3.4) Kw = {ueC[O,l] :inf  u(x)/w(x) = 0} .
' x€(0,1]) -

It may be shown that UEK‘; (the interior of Kw) if and only if there

e ° °
are positive constants ml, m2 such that

m:w(x) < u(x) = m;w(x) xe(0,1]

Let T be the following operator:
X
(3.5) T(F)(x) = J K(x-s){f(s)IPds
0

for feKW‘ We obtain T: Kw —> Kw .

We want to define the Hilbert projective metric. For ul,uzel(:v we
put

M(ulluz) = sup u(x)/uz(x)
x€(0,11
and
m(ulu)= inf u (x)/uz(x).
x€(0,1]

The Hilbert projective metric is defined in KV;V by
(3.6) dw(ul,uz) = log(M(ulluz)/m(ulluz) ).
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We may prove:

o

Lgmma 3.1. For ul,uzeKw

(3.7) dw(T(ul),T(uz)) = 1:>d(u1 ,uz).

Let Ey = {uel(;v : Ilull=l}, where llull= sup  |u(x)]|.
x€[0,1]

" The set E, is a complete metric space with d

W W’
Let .
To(u) = T(u)/IIT(u)IIw
where
_ T(u)(x)
IIT(u)IIW =sup  —es—
x€[0,1]

We can show

Lemma 3.2. (1) . TO: EW —> Ew

(ii) For ul,uzeEw s dW(To(ul)’ To(uz)) =< pdw(ul,uz).

Using the above lemma and Banach fixed point theorem we can finish

the proof of theorem 3.1.

Now we shall apply theorem 3.1 to three examples:

Example 3.1. We assume that the kernel k is a measurable function such
that

¢ x = k(x)»s'czx"r_1 a.e. on [0,1]

where c,»c, >0 and »>0. In this case we can put w(x)=x7/“_p). For such

w we get
c B(z,ﬁ +1)w(x) = T(w)(x) = c B(;;r,ﬂ +1)w(x).
1 1-p 2 1-p
By Theorem 3.1 the equation (3.1) has a unique continuous solution
u with the property

o x’(/ (1-p)

L =< u(x) =

527/“_"), xe[0,1],

where 0<Elsﬁzsm.



Example 3.2. Let k:[0,1] —> [0,1] be defined by the formula:

1 if xel2™®™?, 272]  (n=0,1,2,...)
k(x) = )
0 elsewhere
) We try to put wx)=x""P. For xe(2¥™V,27%], n=0,1,2... we
get
n
1746
rk(x—s)sp/u-p)ds = I s/ Pgs = (1-p)[(1/4n6]1/(1_") .
° 0
On the base of the above inequality we can write
(3.8) TwW)(x) = (1-p)6 7 Pwix).
Moreover we have
(3.9) T(W)(x) = rs”“"”ds = (1-p)w(x).

0
By (3.8), (3.9) and Theorem 3.1. we infer that equation (3.1) has a

unique continuous solution u satisfying the inequality

-1/(1-p)x1/(1-p) 1/(1-p)

(1-p)é = u(x) = (1-p)x

Example 3.3. Now we consider equation (3.1) with
(3.10) k(x) = exp(-1/x")  @o0.

In 1987 P.J. Bushell applying the Laplace asymptotic formula showed
that
(3.11) T(wW)(x) = w(x) as x —> 0
where
3
(3.12) wix) = cx(mx/z)/(r—p)e-v/px
a+l 1/(0c+1)
v =(/(1-p)) ", p=p

and

p(1+0/2)/(1-p) 2 ) YR
c=p [an/{a(aﬂ)p[(l_u) + ]}]

For €>0 given >0 exists such that

(1-e)w(x) = T(w)(x) = (l+e)w(x)

65
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for xe€[0,al. By theorem 3.1. and remark 3.2. we infer that there exists

a continuous solution u of (3.1) in [0,a] such that
m w(x) = u(x) = Ezw(x), xel0,al]

with positive constants ml, mz.

As we have seen above, Hilbert projective metric method works
without a priori estimates. But to show the existence of a nontrivial
solution we must find a nontrivial function w such that (3.2) is
satisfied. And this is the most complicated part of the method. At the
end of this part we must underline that the projective metric method may
be used with some nonlinear equations which are nonhomogeneous (see
[43]).

4 MONOTONE OPERATOR METHODS.

Now we shall study the equation (1.32). We assume that

g:§+—) E+ is a continuous nondecreasing concave function
(g) such that g(0)=0, g(u)/u is strictly decreasing for u>0,

glu)/u —> o as u — 0 and glu)/u -0 as u—>

Moreover the kernel k satisfies assumptions (k).

In [13] the following theorem is presented:

Theorem 4.1. Assume that (k) and (g) are satisfied. If there exists a
continuous nonnegative nontrivial function q on [0,xo], (xoélo,l]) such
that

1
(4.1) qx) = J KGc-s)glalsDds  xel0,x ]
1]

then equation (1.32) has a unique continuous solution ueM. Moreover u is

nondecreasing and

X

4.2) ux) = GU k(s)ds] xel0,1]
0

where G is the inverse function to u — u/g(u).

The theorem is proved in two steps. At first by some monotone
methods we can show the existence of the maximal solution. At the proof

of the uniqueness a translation invariance property of equation (1.32)



is applied. This part of the proof is a simplified version of ideas used
in [36] and [37].

Let us note that the existence of a nontrivial solution follows
from classical comparison theorems (see [30], [47]). On the other side
thg existence of a nontrivial solution satisfying some a priori
estimates can be obtained from Krasnoselskii ([26], [27]).

By Theorem 4.1. we can formulate:

Corollary 4.1. If the equation (1.32) has a solution ueM, then u is

unique. Moreover it is a nondecreasing function satisfying (4.2).
As an easy consequence of Theorem 4.1. we can present:

Lemma 4.1. Let the functions kl (i=1,2) satisfy assumptions (k) and g
(i=1,2) satisfy assumptions (g). Moreover klsk2 and g=g,. If uleM is

the solution of

X

(4.3) u(x) = I kl(x-s)gl(u(s))ds
0

then the equation

(4.4) u(x) = rkz(x-s)gz(u(s))ds
0

‘
has a unique solution uZEM such that uISuz.
Moreover , as an extension of Corollary 4.1. we can formulate:

Corollary 4.2. Let the kernel k satisfy assumptions (k) and let the
function g satisfy assumptions (g). If equation (1.32) has a nontrivial
nonnegative continuous solution on [0,al, (a€l0,1]), then this solution
may be extended to a continuous one on [0,1]. Moreover this solution is

unique and nondecreasing.

Under the assumptions of Corollary 4.2., Theorem 4.1. can be proved
for all x=0. Using this extended version of theorem 4.1. we get the

proof of the corollary.

Remark 4.1. All the results above remain true if we remove the

assumption "g concave".

Example 4.1.([13]) Let ¥zl. Assume that assumptions (g) are satisfied.
If
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1

. 1/
(4.5) J U—l/ du (o
, lgw] "

where up>y , then the equation

(4.6) u(x)= r(x-s)7_lg(u(s))ds x€l0,1]
0

has a unique solutioh ueM.

To show it we introduce the function

u

1/(n-1)
F(u) = J 5—1/ ds
o [g(s)] "

The function

u(x) = F_l(cox).

where co=u[(u—'a’)/(u—l)](“_l)/u, is a solution of the initial value

problem
u = coul_l/“[g(u)]v‘1

u(0) = 0.

This solution belongs to M. Moreover

1/ e
pu(x) = {cor[g(u(s))] “ds} .
0

Using Holder’s inequality we get

X A H-1
pu(x) = c;/“{r(x—s)"_lg(u(s))ds}{J. (x—s)_w_”/(“_”ds} .
o 0

Hence
* -1
(4.7) u(x) = J. (x-s)¥ "g(u(s))ds.
o .

By (4.7) and theorem 4.1. we infer that equation (4.6) has a unique

solution ueM.
Example 4.2. Once more let us consider the equation

X
(4.8) ulx) = I lu(s)Pexp(-1/(x-s)%)ds &0, pel(0,1).
o

In example 3.3. we have asked about the existence of nontrivial

solutions for the equation above. By Hilbert projective metric



techniques it was proved that equation (4.8.) has a unique continuous
solution u on [0,a], a>0, such that u(x)>0 for =xe(0,al. By Corollary

4.2. we infer that equation (4.8.) has a unique solution ueM.

Example 4.3. Let k satisfy assumptions (k) and g satisfy assumptions

(g). If moreover k(x)zclexp(—l/xa) and g(u)s*.czup

, where cl, c2>0, >0
and pe(0,1), then by example 4.2 and lemma 4.1. we infer that gquation

(1.32) has a unique solution belonging to M.

5. SOME PARTICULAR RESULTS.

One may ask if for every function g satisfying assumptions (g) and
for every kernel k satisfying assumptions (k) there exists a
solution of (1.32) belonging to M. This is a difficult question and a
complete answer is not known. We can present only a particular answer.

We shall consider equation (4.6).

Remark 5.1. Let us note that for y€(0,1) equation (4.6) is a nonlinear
Abel equation. An interesting survey concerning nonlinear Abel equations
can be found at [19].

Under strong assumptions concerning g, equation (4.6) was
considered by G. Gripenberg in [20]. There it is shown that equation
(4.6) has a nontrivial nonnegative solution if and only if the so-called
Osgood-Gripenberg condition is satisfied. But assumptions concerning g

may be weakened , and we are able to show the following theorems:A

Theorem 5.1. Let ¥ >0. Assume (g) is satisfied. If

! Q-0
— —du < ®

o [g(u)ll/zr

then equation (4.6.) has a unique solution belonging to M.

Theorem 5.2. Let y=l. Assume (g) is satisfied. If the equation (4.6) has

a solution belonging to M, then (5.1) is satisfied.
We can write the following corollary:

Corollary 5.1. Let 7=l. Assume (g) is satisfied. Equation (4.6) has a

unique solution belonging to M if and only if the condition (5.1) is

jXe}
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satisfied.

The proofs eof the above theorems are based on interesting

functional inequalities. Moreover a comparison theorem is used ([30]).

Remark 5.2. All results above will remain true if we remove the

assumption « g concave » .
Let us look at the Osgood-Gripenberg condition {5.1).

Example 5.1. Let g(u)=u’ (pe(0,1)). For such g the Osgood-Gripenberg
condition (5.1) is satisfied. This means that for such g the equation

(4.6) has a unique solution belonging to M.

Example 5.2. If we put g(u)=ullog(log l/u)]B. B>0, on [0,1/2] and extend
it to a function satisfying (g) then we get:

172 o
u
—————— du = 4o
,[0 [log(log 1/u)]B/a

This means that for such function g satisfying (g) equation (4.6)

has not nontrivial solutions.

Example 5.3. We put gluw=u(log /w)P, g0, on [0,1/2] and extend it to a

function satisfying (g) then we get

JM -1 Ghm if y<B
u
_  du =

B/a
o [log 1/u] +o  if 928

We infer that for B>y there exists a nontrivial solution of (4.6),

while for B=y nontrivial solutions do not exist.

The above examples suggest that for a kernel k very smooth near the
origin, there may not be nontrivial solutions of the equation (3.1). We
suppose that it is possible to find the most general sufficient and
necessary conditions for the existence of a nontrivial solution of
(1.32).

As the above survey shows, there are a lot of open problems con—
cerning the considered equations. Because of the importance for appli-.

cations this equation ought to be intensively studied.



Some more general equations than (1.32) are also interesting (see [1],

lel).
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APPENDIX

On an extension of Gripenberg's condition

W. Okrasinski
Institute of Mathematics. University cof Wroclaw.
PL. Grunwaldzki 2/4
50-384 Wroclaw. POLAND.

AMS (1980) Class. 45D05, 45G10

1.- In some problems of mathematical physics the nonlinear

integral equations of the form
X

(1) u(x)=f k(x-s) glu(s))ds (xe[0,1])
0

where g is a nondecreasing concave function (g(0)=0) and k is
a convex one (k(0)=0), are considered (see |4, |5|, 171,
[8]). If a physical phenomena is described by the equation
(1) then the existence of nontrivial solution of (1) verifies
the correctness of the mathematical model. From a mathemati
cal point of view we ask for which k and g exist nontrivial
solutions. for the case k(x):fx—l(«Zl) this problem was consi
dered by G. Gripenberg (|3]|). It was shown that equation (1)
with this particular kernel has a nontrivial solution if and
only if '

1
(2) 5 {u/g(u)}l/“ 3—u < +a
¢}

But Gripenberg's assumptions do not admit the case g(u)=
=u”(pe(0,1)).

In papers |1!, |2] and |6]| it is shown that Gripenberg's
condition is true for the more general g satisfying the follo

wing assumptions:

(g) g:R, —» R, (R+=[O,N)) is a continuous, non-decreasing
function such that g(0)=0, g(u)/u is strictly decreasing for

u>0 and g(u)/u —>P e as u — O+.

At this note we would like to show shortly how to extend
the classes of functions g and k for which exist nontrivial

solutions of (1).
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We shall assume
(k) k:[0,1] —» R+ is a convex function such that k(0)=0 and
kecllo, 1] (k(x)40).
2.- We can show.

Lemma 1: Equation (1) has a nontrivial continuous solution u
if and only if a decreasing function-VELl[O,l]AC(O,ll exists

such that v(x)?0 for x20 and satisfying the equation

X X -1
(3) veo=§f k([ v(€)ape (s)as]

o] s
Proof: We know u is an absolutely continﬁous convex function.
We get

X
(4) u'(x)={ k(x-s)g'(u(s))u'(s)ds

0

Since u is strictly increasing we infer that inverse
function u_l exists and is differentiable for x»0. We denote
by v the derivative of u_l. It is a decreasing function belon
ging to Ll[O,lj n C(0,1] and satisfying (3) with respect to
(4).

If a locally integrable function v satisfies (3) then

ps
the inverse function to x ——+I v(s)ds must satisfy (1).
(0] .

Remark 1: If veL'[0,1]aC(0,1) satisfies (3) then

X X
(5) [ &(f v(§raf)gr(s)ds=x for x30
0] s
where
X
(6) K(x)= J k(s)ds
0

From here, instead equatién (1) we can consider equation

(3).

3.- At this point w= additionaly suppose: (k log k(x) is a

1)
concave function.

Remark 2: Under such assumptions the function k K_l is conca

ve.
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We can prove:

Theorem 1: If VELl[O,l]AC(O,1| such that v(x)»0 for x>0 is a
solution of (3) then (K_l)'(x/g(X))/g(X)éLl[Oyll-

Proof: We can write (3) éé
X -1 X
v(x)=1/§ k K (K{({ v({)df))g'(s)ds
0 s
snice k K™' is concave we get
_1 X X
v(x)31/g(x)k K 7(f K(f v(f)dl)g' (s)ds/g(x))
0 s .
By Remark 1 we have
v(x)71/g(x) k K 1(x/g(x))=(K" 1)  (x/g(x))/g(x)

The theorem is proved.

Corollary 1: If v¢ Ll[O,l}AC(O,ll is a solution of (3) then
i

(7) S & <t
0 g(u)k K " (u/g(u))

4.- Let

(8) K(x)=x k(x)

Remark 3: The function K is convex.

Theorem 2: If veLl[O,llAC(O,ll is a solution of (3) then
(9) vix) €2k (x/g(x)) /x

Proof: If veLl[O,l]nC(O,ll is a solution of (3) then v(x) is
decreasing and continuous for x > 0. Applying Young inequatily

to (3) we obtain

' X
vO0O$1/g0x) k([ viglag g'(s)ds/gx))
0's

From the above inequality we get
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v(x)€1/g(x) k(J: v(s)g(s)ds/g(x))
Since v is decreasing we obtain
v<x).k<v(x>jz g(s)ds/g(x))$1/g(x)
Since, by assumptions, g(s)2sg{x)/x for s€[0,x] then
vix)k(v(x)x/2)&1/g(x)
and
vix)x k(v(x)x/2)/2¢x/2g(x)
From the last inequality we have
vix)x/2 K H(x/2g(x))

We infer inequality (9) is true.
Corollary 2: We assume (g), (k) and-(kl) are satisfied. If
veLl[O,l]AC(O,l] is a solution of (2) then

1

1/g(x)k K F(x/g(x))€v(x)€2 K (x/2g(x))/x

Remark 4: Since K ' is concave then K_l(x/zg(x))/XGLl[O,l] if
and only if R_l(x/g(x))/xéLl[O,l].

4.- We can show

Theorem 3: If

. 1
(10) [ K Musgu)) v
) 0

then equation (1) has a nontrivial solution.
Proof: Consider the equation.
. X
(11) u‘(x)=€x“+s k(x—s)g(ue(s))ds (xe€l0,1])
0

By |5| this equation has the unique solution uE(éé(O,l))
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-1
&
denote the inverse function to Ug - This function is nondecrea

such that ué(x)?o for x20. This solution is convex. Let u

sing concave and differentiable for x>0. Let vg denote (ue_l)'_

The function %.satisfies the following equation (see Theorem
1).

X X X
(12) v (x)=1/(2eu " <x>+50 kqo k(fs v (§)aD)g" (s)as) €
X X
$ U k(f v (§)df)g'(s)ds
°o s ¢
As in Theorem 2 we can show that
v (x)€2 K~ L(x/2g(x))/x (x€[0,1])

and by Remark 4 we can write

-1

(13) ooug (x)

X <
el(x)$2SO K_l(s/Eg(s)) gééF

From (13) we obtain
ue(x)zF(x) (xef0,1])

Let £ 0. Then u&(x);u(x) and u is a solution of (1) (see

|6]). since u(x)¥» F(x) we have found a nontrivial solution of

(1.

Corollary 3: If

4
(14) Joxt wew) S8 < 4w
0

Then equation (1) has a nontrivial solution.

Since K(x)&x k(x)2K(x) then by Theorem 3 we infer the
corollary is true.

-

5.- Let us note that in the case k(x):x“‘l(m>1) conditions
(7), (10) or (14) are equivalent to Gripenberg's condition
(2). By the condition (10) we can infer that the equation (1)
has a nontrivial solution in the case k(x):exp(—l/xQ )
(g €(0,1)) and g(u)=uP(p€(0,1)). But it is knowathat equation
(1) has a nontrivial solution for any @?O (see l2]). It su

ggest we ought to look for more subtle conditions.
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