IDEAL SEMIGROUPS ASSOCIATED TO AN OPERATOR IDEAL

M. Gonzalez, University of Santander, Spain.

AMS 1980 Classification: 47D30, 47A53, 46B20

In [3, 4, 5] semigroups associated with some operator ideals defined in terms of sequences were introduced. In this paper we associate to every operator ideal U two semigroups SU_{+} and SU_{-} stable under perturbation by operators in U. If $T \in L(X,Y)$ is an operator and U injective (surjective), then the kernel N(T) (cokernel $Y/\overline{R(T)}$) of T belongs to the space ideal Sp(U).

For operator ideals verifying a condition related with the three space property [6, 7], we obtain characterizations for semi-Fredholm operators and some incomparability classes of Banach spaces [1]. We show that this condition is satisfied by the operator ideals considered in [3, 4, 5], and by the generalized strictly (co)-singular operators studied in [2, 9].

Recall that an operator $T \in L(X,Y)$ is <u>upper semi-Fredholm</u> ($T \in SF_+$) if it has closed range R(T) and finite dimensional kernel N(T). T is <u>lower semi-Fredholm</u> ($T \in SF_-$) if it has closed range and finite dimensional cokernel $Y/\overline{R(T)}$.

Following [8], an <u>injection</u> (<u>surjection</u>) will be an injective (surjective) operator with closed range.

Every operator ideal U has associated an <u>space ideal</u> [8] $Sp(U) := \{ X \neq \text{the identity} \ I_X \text{ belongs to } U \}.$

<u>Definition</u> Let U be an operator ideal and X,Y Banach spaces.

```
SU_{+}(X,Y) := \{ T \in L(X,Y) / TA \in U \text{ implies } A \in U \}

SU_{-}(X,Y) := \{ T \in L(X,Y) / BT \in U \text{ implies } B \in U \}
```

 $\underline{Proposition} \quad Let \quad U \quad be \ an \ operator \ ideal.$

- (1) SU_{+} and SU_{-} are semigroups stable under perturbation by elements of U.
- (2) If U is injective, then $SF_{+} \subseteq SU_{+}$ and for every $T \in SU_{+}$ we have $N(T) \in Sp(U)$.
- (3) If U is surjective, then $SF_{\subseteq}SU_{\subseteq}$ and for every $T \in SU_{\subseteq}$ we have $Y/\overline{R(T)} \in Sp(U)$.
 - (4) If U = Co, then $SCo_1 = SF_1$ and $SCO_2 = SF_2$.

<u>Definition</u> Let U be an operator ideal.

U is said to have the <u>left three space property (L3SP)</u> when given $A \in L(X,Y)$ and a surjection q such that $N(q) \in Sp(U)$ and $qA \in U$, then we have $A \in U$.

U is said to have the <u>right</u> three <u>space</u> property (R3SP) when given $B \in L(X,Y)$ and an injection i such that $X/R(i) \in Sp(U)$ and $Bi \in U$, then we have $B \in U$.

Note that the L3SP (or R3SP) implies the <u>three space property:</u> If I_M , $I_{X/M} \in U$ for some subspace M, then $I_X \in U$ [6].

<u>Theorem</u> Let U be an operator ideal containing the nuclear operators and $T \in L(X,Y)$.

- (1) Suppose U is injective and verifies the L3SP. Then $T \in SF_+$ if and only if $T \in SU_+$ and for every subspace M of X in Sp(U) the restriction $Ti_M \in SF_+$.
- (2) Suppose U is surjective and verifies the R3SP. Then $T \in SF_{-}$ if and only if $T \in SU_{-}$ and for every subspace N of Y such that $Y/N \in Sp(U)$ we have $q_{N}T \in SF_{-}$.

Theorem With the same hypothesis as in the above theorem,

- (1) X belongs to $Sp(U)^{i}$ if and only if $SF_{+}(X,Y) = SU_{+}(X,Y)$ for every Banach space Y.
- (2) X belongs to $Sp(U)^{C}$ if and only if $SF_{Z}(Z,X) = SU_{Z}(Z,X)$ for every Banach space Z.

<u>Proposition</u> The operator ideals of all compact, weakly compact, Rosenthal or l_1 -singular, completely continuous and weakly completely continuous operators verify the L3SP, and the corresponding dual ideals verify the R3SP. Recall that $U^{\text{dual}} := \{ K / K' \in U \}$.

Given a subspace M of X, i_{M} will denote the natural injection of M into X and q_{M} the quotient map onto X/M.

Definition Let A be an space ideal and X, Y Banach spaces.

 $\begin{array}{lll} A-SS(X,Y) := \{ T \in L(X,Y) \ / \ Ti_{M} & \text{injection implies} & M \in A \} \\ A-SC(X,Y) := \{ T \in L(X,Y) \ / \ q_{N}T & \text{surjection implies} & Y/N \in A \}. \end{array}$

Recall that two Banach spaces X and Y are <u>totally incomparable</u> (<u>coincomparable</u>) [1] if Banach spaces isomorphic to a subspace (quotient) of X and to a subspace (quotient) of Y have finite dimension.

Given a space ideal A we shall denote A^i (A^c) the class of Banach spaces which are totally incomparable (coincomparable) with every space in A. A^i and A^c are space ideals, $A^i = A^{iii}$ and $A^c = A^{ccc}$ [1].

Proposition Let A be an space ideal.

- (1) If $A = A^{ii}$, then A-SS is an operator ideal verifying the L3SP:
- (2) If $A = A^{CC}$, then A-SC is an operator ideal verifying the R3SP.

We shall denote SA_+ the semigroup SU_+ associated to U = A-SS and SA_- the semigroup SU_- associated to U = A-SC.

Theorem Let A be an space ideal and $T \in L(X,Y)$.

- (a) Suppose $\mathbb{A} = \mathbb{A}^{ii}$. $T \in S\mathbb{A}_+ \iff N(T+K) \in \mathbb{A}$ for every $K \in Co(X,Y)$ $\iff Ti_{M} \in SF_+$ for every subspace M of X in \mathbb{A}^{i} .
- (b) Suppose $\mathbb{A} = \mathbb{A}^{CC}$. $T \in S\mathbb{A}_+ \iff Y/\overline{R(T+K)} \in \mathbb{A}$ for every $K \in Co(X,Y) \iff q_M T \in SF_+$ for every subspace M of Y with $Y/M \in \mathbb{A}^{\hat{I}}$.

REFERENCES

- [1] Alvarez, T.; Gonzalez, M.; Onieva, V.M.: Math. Nachr. 131 (1987), 83-88.
- [2] Alvarez, T.; Gonzalez, M.; Onieva, V.M.: Actas VII Congr. G.M.E.L. Univ. Coimbra (1987), 5-8.
- [3] Gonzalez, M.; Onieva, V.M.: Proc. R. Ir. Acad. 88A (1988), 35-38. EXTRACTA MATHEMATICAE 3.1 (1988).
- [4] Gonzalez, M.; Onieva, V.M.: Proc. R. Ir. Acad. 88A (1988), 119-124. EXTRACTA MATHEMATICAE 3.2 (1988).
- [5] Gonzalez, M.; Onieva, V.M.: Characterizations of tauberian operators and other semigroups of operators. Preprint 1988. EXTRACTA MATHEMATICAE 3.3 (1988).
- [6] Jarchow, H.: Math Nachr. 119 (1984), 121-128.
- [7] Onieva, V.M.: Math Nachr. 126 (1986), 27-33.
- [8] Pietsch, A. "Operator ideals" North-Holland, 1980.
- [9] Stephani, I.: Math. Nachr. 94 (1980), 29-41.