SOME f_{σ} -SETS IN L(E,F) FOR THE WEAK OPERATOR TOPOLOGY. (1)

A. García—Nogales.Dpto. de Matemáticas. Univ. Extremadura.06071—Badajoz. SPAIN.

(1) Mathematics Subjet Classification 1980: 47B10.

We shall write E,F for Banach spaces and B_E for the unit ball of E. We denote by L(E,F) the space of continuous linear mappings (operator, for short) from E to F. For a subspace S(E,F) of L(E,F) we shall denote by $S^W(E,F)$ (resp., $S^S(E,F)$) the space S(E,F) endowed the weak operator topology (resp., the strong operator topology), i.e., the topology on S(E,F) induced by the product topology of F^E when F is endowed with its weak topology (resp., its norm topology).

In this paper we prove that S(E,F) is an F_{σ} -set of $L^{\mathbf{w}}(E,F)$ for some known subspaces S(E,F) of L(E,F); an example shows that this is not always the case.

For $0 , an operator S from E to F is said to be absolutely p-summing (see, for ex., (1)) if there is a constant C such that for each finite number of points <math>x_1, ..., x_n$ of E one has

$$\left(\sum_{i=1}^{n} \| \mathbf{S} \mathbf{x}_i \|^p \right)^{1/p} \leq C \cdot \sup \left\{ \left(\sum_{i=1}^{n} | \mathbf{x}^* (\mathbf{x}_i) |^p \right)^{1/p} / \mathbf{x}^* \boldsymbol{\epsilon} \mathbf{B}_{E^*} \right\}$$

We shal denote by P_p(E,F) the set of absolutely p-summing operators from E to F.

For a finite operator $S \in L(E,E)$ which has a representation $S = \sum_{i=1}^{n} x_{i}^{*} \otimes x_{i}$ where $x_{i}^{*} \in E^{*}$ and $x_{i} \in E$, for $1 \le i \le n$, the trace of S is

$$tr(S) = \Sigma_{i=1}^{n} x_{i}^{*}(x_{i}).$$

An operator $S:E\longrightarrow F$ is said to be integral if there is a constant C such that

$$|tr(SL)| \le C \cdot ||L||$$

for each finite operator L:F \rightarrow E (see (1)). We denote by I(E,F) the set of this operators.

We shall say that an operator $S:E \longrightarrow F$ factors through a Hilbert space if there is a Hilbert space H and operators $B:E \longrightarrow H$ and $A:H \longrightarrow F$ such that S=AB. We denote by H(E,F) the set of these operators. It is well known (2, p.25) that $S\in H(E,F)$ iff there is a constant C such that for every $n\in \mathbb{N}$ and every orthogonal matrices (a_{ij}) we have

$$\Sigma_{i=1}^{n} \parallel \Sigma_{j=1}^{n} \mathbf{a}_{ij} \mathbf{S} \mathbf{x}_{j} \parallel^{2} \leq \mathbf{C}^{2} \cdot \Sigma_{j=1}^{n} \parallel \mathbf{x}_{j} \parallel^{2}.$$

for all $x_1,...,x_n$ in E.

We write D for the product $\{-1,1\}^{\mathbb{N}}$ endowed with its Borel σ -field, $\{-1,1\}$ being considered discret, and the product probability P when we consider on $\{-1,1\}$ the probability Q defined by $Q(\{-1\})=Q(\{1\})=1/2$. We write $(r_n)_n$ for the (Bernouilli) sequence of the projection from D onto its factors.

For $1 we say that an operator <math>S: E \longrightarrow F$ is of type p if there is a constant C such that for any $n \in \mathbb{N}$ and any $x_1, ..., x_n \in E$ we have

$$\left[\int_{D} \| \Sigma_{i=1}^{n} r_{i}(t) \cdot Sx_{i}\|^{2} dP(t)\right]^{1/2} \leq C \cdot \left[\Sigma_{i=1}^{n} \|x_{i}\|^{p}\right]^{1/p}.$$

We shall denote by $T_p(E,F)$ the space of all operators of type p from E to F. The dual Banach space of $L_2(P_n;F)$ is $L_2(P_n;F^*)$, where P_n (neW) denotes the uniform probability on $\{-1,1\}^n$.

For $2 \le q <_{\infty}$ we shall say that an operator $S \in L(E,F)$ is of cotype q if there is a constant C such that for any $n \in \mathbb{N}$ and any $x_1, ..., x_n \in E$ we have

$$\left[\sum_{i=1}^{n}\|\mathbf{S}\mathbf{x}_{i}\|^{q}\right]^{1/q} \leq C \cdot \left[\|\sum_{i=1}^{n}\mathbf{r}_{i}\mathbf{x}_{i}\|_{L_{2}\left(E\right)}\right].$$

We shall write $C_q(E,F)$ for the space of these operators. The first member in the precedent inequality is the norm of $(Sx_1,...,Sx_n)$ in the Banach space $l_q^n(F)$ whose dual is $l_{q^*}^n(F^*)$, q^* being the conjugate exponent to q.

We refer to (2) for the definitions and some results related with type and

cotype and factorization through a Hilbert space.

We have then the following result.

Theorem: For S=P_p, I, H, T_p, C_q, S(E,F) is an F_{σ}-set in L(E,F) for the weak operator topology.

The following example shows that we cannot expect similar results for the space of weakly compact operators.

EXAMPLE: The space of weakly compact operator $W(l_1,F)$ from l_1 to F is an F_{σ} -set of $L^W(l_1,F)$ if and only if F is reflexif. A sequence in the unit ball of F with no weakly convergent subsequences and a Baire category argument gives the proof.

REMARKS: 1) The proof in this example shows even that $W(l_1,F)$ for F non-reflexif is not an F_{σ} -set in $L(l_1,F)$ for the strong operator topology.

- 2) The method in the example shows even that the space of compact operators from l_1 to F is an F_{σ} —set for the weak operator topology iff dim $F <_{\infty}$.
- 3) As a consequence of the results contained in this paper we have, for example, that $S^{\mathbf{w}}(E,F)$ (resp., $S^{\mathbf{s}}(E,F)$) is \mathcal{K} -analytic whenever $L^{\mathbf{w}}(E,F)$ (resp., $L^{\mathbf{s}}(E,F)$) is \mathcal{K} -analytic if $S=P_p,I,H,T_p$ or C_q . The reader can find in (3) some results about the \mathcal{K} -analyticity of L(E,F) for the weak and strong operator topology.

BIBLIOGRAPHY

- (1) A. PIETSCH: Operator Ideals. North-Holland Publ. Co. (1980).
- (2) G. PISIER: Factorization of Linear Operators and Geometry of Banach Spaces. Conference Board of the Math. Sci. (AMS), Num. 60 (1986).
- (3) M. TALAGRAND: Sur la *K*-analyticité de certains espaces d'opérateurs. Isr. J. of Math, 32 (1979).

(to appear in the Bolletino della U.M.I.).