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THE LIMIT SET OF FUCHSIAN AND KLEINIAN GROUPS*

Jost L. FERNANDEZ

The theory of Fuchsian and Kleinian groups was created and developed by Poincaré
and Klein in the later part of last century. It was quite dormant until the sixties when
Ahlfors and Bers brought it back into the main stream of mathematical research.

We shall be concerned chiefly with one specific aspect of this topic. Nonetheless even
surveying this confined area would be quite impossible and what I have in mind is more
like a leisurely trip through some of my favorite spots.

[

Here is a guide:

. Definitions.

. Examples.

. The limit set. Hopf-Tsuji-Sullivan theorem.
The exponent of convergence.

. Spectral theory. An illustration.

. Diophantine analysis.

. Action on $1. Mostow’s rigidity theorem.

*This is the content of a lecture delivered at the summer course on "Fractals” of the
Universidad Complutense at El Escorial. August 1988.
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1. DEFINITIONS.

We shall denote by A the unit disk in the complex plane C and by U its upper half
plane. By M(A) and M(U) we shall mean respectively the group of all sense preserving
Mobius transformations from A onto itself and from U onto itself. Notice that M(U) =

SL(2,R)/{*I} = PSL(2,R).

A Fuchsian group is a subgroup of M(A) (or M(U)) which acts discontinuously
on A (or U). This is equivalent to being a discrete subgroup of SL(2,R)/{*I}.

A fundamental fact, which was discovered by Poincaré, is that M(A) is also the full
group of direct isometries of A endowed with the usual model of hyperbolic geometry i.e.
the Riemannian metric 9

T I

(the factor 2 is there so that it has curvature —1).

ds |dz]|

By a Kleinian group it was usually meant a subgroup of SL(2,C)/{}I} = { Mobius
transformation of the Riemann sphere $?) which acts discontinuosusly somewhere on SZ.
Thus, Fuchsian groups are just a particular case of Kleinian groups. Poincaré recognized
though that Kleinian groups should be considered as higher-dimensional generalizations
of Fuchsian groups. This is the case since Mobius transformations are just products of
reflections on circles C of the sphere S? and any such reflection can be extended in a
canonical way to act on the unit ball of R® (simply consider the reflection on the sphere
which intersects S? orthogonally on C).

From now on the term Kleinian group will mean a subgroup of Mob(B™) which acts
discontinuonsly in B®,n > 3. (It may act discontinuonsly nowhere on S™~! and so for
n=3 this is a more general concept that the one mentioned above.)

2. EXAMPLES.

Let R be the rectangle {z = z +1iy; 0 <z <a, 0 <y < b}. By the Riemann
mapping theorem there is a conformal mapping from R onto U so that the vertices are
carried onto the points 0,1, 00 and, say, k. If you are Schwarz you would use a certain
principle to succesively reflect f and obtain in this way a meromorphic map F. Moreover, if
T is the group generated by the translation by 2a and 2ib then the map F is G-equivariant
i.e. F is an elliptic function. As a matter of fact F is a Weierstrass P-function.

Suppose now that T is a "triangle” whose sides are segments of straight lines or circles.
As above we have a conformal mapping f from T onto U so that the vertices are carried
onto the points 0,1 and oo. Let G be the group generated by reflections on the sides of T
and let " be the subgroup of words of even length (the elements of T' are sense preserving).
If we try to apply the process above to get a meromorphic I'-equivariant function F we
readily see that the angles at the vertices of T must be of the form = /p, 7 /q, w/r where p,q,r
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are positive integers (or co). The triangle T would be spherical, euclidean or hyperbolic
according to %+%+% > 1,=1or < 1. For the first option to occur one must have for (p,q,r)
the value (2,2,n), n > 1; (2,3,3); (2;3,4) or (2,3,5) which correspond to G being a dihedral
group, or the group of symmetries of the tetrahedron, octahedron/ cube, icosahedron/
dodecahedron. All are finite groups. For the second option only the triples (3,3,3); (2,4,4);
(2,3,6); (2,2,00) may occur; the first three give the usual triangle tesselations of the plane
and the corresponding F area P', a P2?, and a P’2 while the last one has a half strip
as triangle and cos z as F.

But the third option gives us a whole zoo: the triangle groups and functions of Schwarz.
Now G(T) is a tesselation of A by congruent hyperbolic triangles, and I is a our first
example of Fuchsian group. A fundamental region for its action is obtained by adjoining
two adjacent triangles of G(T).

The hyperbolic area of T may be calculated by the Gauss-Bonnet theorem and it is
m(1-1/p—1/¢—1/r).

The smallest possible value is 2.77 which occurs when (p,q,r)= (2,3,7). This is the familiar
picture of the densest triangle tesselation of the hyperbolic plane.

Notice that the equivariant meromorphic function F has branching of order (p,q,r)
at the vertices of the tesselation but maps the fundamental region in a 1-1 fashion onto
a slit plane. In the limiting case, i.e. when p=q=r=oco, the triangle T has vertices at
the hyperbolic co (i.e on the circunference of A); this means that in this case there is
no branching (it has been pushed away) and F is now the familiar universal cover of the
three-punctured sphere. An immediate corollary is Picard’s theorem. '

Actually, by the uniformization theorem there are only three simply connected Rie-
mann surfaces:” A,C and S?. Every Riemann surfaces can be represented as a quo-
tient of a simply conected one, X, by a fixed point free discontinuous group of conformal

* automorphism of X. With X = S? or X = C this produces only 5%, C,C \ {0} and the
tori, therefore, any other Riemann surface S is represented as

S~A/T
where I is a Fuchsian group (without elliptic elements).

Since the elements of I are also hyperbolic isometries this endows S with a complete
metric of constant negative curvature. More generally, if M is a complete Riemannian
n-manifold of constant negative sectional curvature then the universal cover is also of
constant negative curvature and complete and so it is hyperbolic n-space. Thus

M = B"/T

where I is a Kleinian group.



We can add branching data to the uniformization process. Let us consider one very
particular instance of this. Let us mark in the sphere S? n points aj,...,an,n > 3, and

n
. e . . 1
assign positive integers p;...pn to them with the requirement that E — < 1. Then there

i=1 4t

is a Fuchsian group I'(now with elliptic elements) so that
AJT ~ §?

and the projection II : A — S? is branched of order p; over the preimages of a;,7 = 1, ...,n.
The inverse Z of m is defined locally on S2 \ {a;...a,}. If welet ¢ = {2} where {m,z} is

x'2
the Schwarzian derivative of m, then it can be seen that Z is the quotient of a fundamental
pair of solutions of the differential equation.

(1) w' +pw=0
Under special circumstances this whole process can be reversed, and starting from an
equation like (1) obtain the group and the covering. The hypergeometric equation lead
Schwarz to the triangle groups and Fuchs papers on linear differential equations were an
inspiration for Poincaré work on Fuchsian groups. It was him who coined the term.
‘ The most important example of Fuchsian group is the modular group SL(2,Z). 1t is
generated by z — z+ 1 and z — —1/2. Its fundamental region R is the familiar modular

picture.
R={z: |Re 2|<1/2, Im 2z>0, |[z]>1}.

This is equivalent to the fact that any positive definite quadratic form
az? + 2bzy + ¢y’ T,yER
is unimodulary equivalent to another
a'z? + 2'zy + c'y?

where
26| <d' <.

The corresponding analogue for hermitian posivive definite quadratic forms
"a|z|? + bzT + bET + ¢|7|?
ts equivalent to

dlz|* + b7 + 0z + |7



where

2 max{|Re b|,|]Im b|]}<d <7,

is provided by the Picard group SL(2,Z + iZ) acting on R? x R* by means of Poincaré’s
device.

Our final example is the Schottky groups. Consider a configuration of four (in general
2g,¢g > 1) mutually disjoint disks D; in the plane. Let T (respectively S) be the Mobius
transformation which takes the outside of D, (resp., D3) onto the inside of D, (resp. Dy).
The group G generated by S and T is a Kleinian group. A fundamental region for its
action on S? is the region autside the four disks. Notice that S?/G is a compact Riemann
surface of genus 2.

3. THE LIMIT SET. THE HOPF-TSUJI-SULLIVAN THEOREM.

Let T’ be a Kleinian group in B™,n > 2. The orbit of 0,I'(0), accumulates only on
dB™ = S™~!. The derived set of I'(0) is called the (topological) limit set A(T) of T'. A
bit of hyperbolic geometry shows that if any other orbit is used then the same set A(T') is
obtained.

The limit set has either 0, 1 or 2 points or else it is a perfect set. Those groups with
finite limit sets are called elementary and they are readily classified. If T" is not elementary
then A(T) is a minimal T-invariant closed set in B™ (or S™71).

A(T") may be the whole of S™~! but if this is not so then A(T') is a totally disconnected
nowhere dense Cantor like set, or better, to say it at least cuce, a fractal .

We shall be mostly concerned with studying the size of A(T") and also the dynamics
of the action of T on A(T).

The main developers of this theory are A. Beardon, S. Patterson, and D. Sullivan.

Example: Consider the group generated by z — 1:_:'3)‘ and z — li':(itf\,\‘). Call it
GA). 1> x> 32é then G(A) is a Fuchsian group acting on A. When A = 39 then
G (;2@) has the whole circle as limit set, if A > -{—2 then G()) has fractional dimension

one can show that

K log 3
— 5 2 DG = —
log T log T

where K is an absolute constant, and that

: 14
il_rnl D (A(X))log T = log 3.



A group T is geometrically finite if it admits a fundamental polyhedron with finitely
many faces. In the case n = 2 a theorem due to Siegel asserts that I is geometrically finite
iff T is finitely generated. But for n > 3 not every finitely generated group is geometrically
finite (Greenberg) though the converse holds.

Q1. Ahlfors’ area conjecture (1964). For a finitely generated Kleinian group I'
in B™.

H*™1(AT) =0 or A(T)=8""1.

This is probably the most fundamental problem in our topic of interest. We shall
presently show that the conjecture holds for geometrically finite groups and it is known
that for certain limits of geometrically finite groups the conjecture holds (Thurston).

’

Let us introduce now an important subset of A(T"). It is the so-called conical limit
set C(T'). It is defined as follows:
& € C(I') if a subsequence of I'(0) lies on some Stolz cone at €.

This is independent of the orbit used. Notice that C(T') is I'-invariant.

Example: T = SL(2,Z) then A(T') = R, C(T') = irrationals. We shall discuss
this example later, but let us remark now that the situation it describes is quite general:
(Beardon-Maskit) If T is geometrically finite then A(T")\ C(T') is countable.

With no finiteness assumption C(T') always satisfies a fundamental dicothomy:
(*)  either H"'(C(I)=0 or H* 1 (S*'\C())=0
We shall see later how this relates to several other dicothomies, but observe that an in-
mediate consequence is that Ahlfors conjecture holds for geometrically finite groups, (use

Beardon-Maskit), and that it holds for n = 2 in full generality (use Siegel’s result). The
proof of (*) is so simple that we can not resist giving it.

Proof of (*). Start with n = 2.

Let u be the Poisson extension of x¢(ry. Then since C(T') is I-invariant we have that
u is I'-equivariant, i.e. ugy = u, Vv € . Now for a.e. £ € C(I') we have li;rflu(z) =1,
where z > £ means z approaches € within a Stolz angle, but then we deduce, if [C(T")| > 0,

that u(0) = 1 and so |S* \ C(T')| = 0. For n = 3 the proof is the same but one should use
the hyperbolic Poisson Kernel. i

Consider now the (absolute Poincaré) series.

§=3 (1=l
ger )
If this series converges/diverges then the group is called of convergence/divergence type.
This is a relevant distinction. For one thing if'S < oo then necessarily H*~! (C(T")) = 0.
This is the easy half of the Borel-Cantelli Lemma. It turns out that the other half works
here too. This is part of the following beautiful theorem:



Hopf-Tsuji-Sullivan

Let T be fixed point free Klenian group on B", and let M = B™\T be
endowed with the proyection of the hyperbolic metric. Then the following
statements are equivalent:

(i) T is of divergence type

(ii) ™1 (S"~1,C(I)) =0

(iii) M does not possetss a Green’s function for the Laplace-Beltrami oper-
ator : :

(ii’) There are no positive non-constant superharmonic functions on M.

(1ii”) Brownian motion on M is recurrent

(iv) The geodesic flow on the unit sphere bundle is ergodic with respect
to Liouville’s measure

(v) The diagonal action of T gn S"!' x §™~! is ergodic.

We should remark that T' never acts ergodically on (S™1)¥, if k > 3.

While the equivalence of (iii’) and (v) is a deep result the parallel fact that action on
S$7~1 is ergodic iff there are no bounded (or positive) non-constant harmonic functions is
trivial. In the case n = 2 only after a long search it was found that there are Riemann
surface with Green’s function but such that all bounded harmonic functions are constants.
For plane domains these two properties are equivalent.

Q2. Is there a group characterization like (i) or (ii) of the Liouville property:
there are no non-constant bounded harmonic functions?.

Varopoelos has given a partial soluti'on to this question, namely:
if ' is a normal sobgraup of a finitely generated Fuchsian group then A \ T has
Liouville’s property iff |[V(T')| = 2r, where V(T') is defined as those { € S’ so that for same

sequence of v, € I' h-dist (y,(0), ray at £) =0 (T—_dm)

If we further assume that n = 2 and that M is a plane domain then we add to these
conditions the theorem of R. Nevanlinna stating that the following are equivalent

(iii) M does not possess a Green’s function

(vi) OM has zero logarithmic capacity

(vi1) The universal cover (now a function) 7 does not belong to the Nevanlinna class
ie.,

2
SUuPo<r<i1 / log* |H(re‘9| df = oo.
0

Example: Consider a totally disconnected compact set E C C of positive logarith-
mic capacity let M = C! \ E and let I be the covering group of M. Thus A/T = M.
Then T is of convergence type and so C(T') has zero length while A(T") = S.



We may have stronger examples where C(I") has fractional dimension but A(T) =
S!, one simply takes E C [0,1] to be the Cantor set, or any fractal of positive dimension.
This depends on the work in 5.

4. EXPONENT OF CONVERGENCE.

The condition of convergence or divergence says, as we have seen, quite a bit about the
size of the quotient manifold (or the boundary of a Riemann surface). A simple packing
argument in hyperbolic space shows that for every group

Y (1=(O))* < o0

Y€T

for every a > n — 1.

It is natural to introduce, as was done by Beardon, the so-called exponent of con-
vergence as

5(T) = inf {t ;51— o)) < oo}

~v€r

. Thus §(I') < n — 1, and, but for a few exceptions §(T') > 0.
By the very definitions one sees that

§(T') > Dim(C(I)).

For n = 2 we have the following result (Patterson-Sullivan)

*) é(T) = Dim(C(T))
and in particular

8(T) < Dim(A(T)).
and so for geometrically finite Fuchsian groups

§(I') = Dim(A(T)).

As far as I know the following question remains open.
Q3. Does (*) hold for Kleinian groups, n > 37.

A consequence of (*) which we have already mentioned in that for finitely generated
Fuchsian groups either A(T') = S? or else Dim(A(T")) < 1. This is a theorem of Beardon.
It also holds for geometrically finite Kleinian groups and n = 3. This is due to Sullivan
and Tukia. : '



Q4. Does Beardon-Sullivan result hold for arbitrary n?.

In this direction Phillips-Sarnak and Doyle have shown that if I' is any Schottky group,
n > 3, then

Dim(A(T)) < Cn<n—1

C,, depends only on n. This result is plainly false when n = 2, as the group G (ﬁ) shows.

The proof of the Patterson-Sullivan theorem above depends on the notion of conformal
density and the existence of the Patterson measure.

A conformal density of dimension « is a probability measure p on A(T") which satisfies

ge(p) = 1g'|°p;Vg €T

where |g'| is the linear distortion of g.
The result is that

(1) There is a conformal density of dimension §(T').
(i1) Any conformal density has dimension > é(T')..

A conformal density of dimension §(T") is a Pattersnn measure. The invariance
property tells a lot about the fractal nature of A(T'). Here is an outline of how it is
obtained. Assume for simplicity that 3 (1 — |y(0)[)® = 0.

Now let s > 6 and define

[y = Ze""i(o"’(o))&,(O),

where d means hyperbolic distance; set v, = —E—”.('A)~

If v is any weak limit of the v,, then v is our measure. First, because py,(A) — oo,
one sees that v is supported on A(T).

Now, if z € B™, y € B™ and y converges to z € S™~! euclideanly then a calculation
shows that

1—|z|?

d(oay) - d(xvy) - lz _ z|2
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But then

1 E ' —sd(0,%(0))
9x = € ! bg- =
(7s) 1s(D) - 9~ 1+(0)

1 —~3d(0,97(0))
= e ! 6 =
Ns(A) 2‘7: ~(0)

- ! 3 e oldle™ 050 0] md OO g o
r

- .US(A)

. —lg~ 1} §
Therefore  lim,_.s (ll,—_sl,g_—l(%)[zl) 7s = 16" ()| s-
5. SPECTRAL THEORY. AN ILLUSTRATION.

If you write

Fw) = [ P, o du(p)
where u is the Patterson measure, and P is the hyperbolic Poisson Kernel: P(w,p) =
fona
(‘17—1%1;) , then F is [-equivariant and the (hyperbolic) Laplacian of F is

AF = §(T) (n — §(T)) F

Also F' > 0. There is a remarkable result, again due to Patterson and Sullivan,
concerning the spectral theory of the Laplacian.

Let T' be a Kleinian group and let

2
) = ing {40 (n = 500, }
Then:
© (D) b(T') is the bottom of the L?-spectrum of B™/T = X i..

J1VplPdwx

)= in _
(T) pece(x) [ |pl*dwx

where dwx is the volume form of the hyperbolic metric of X.
(2) b(I") is the upper bound of the positive spectrum. i.e.

if ¢t <B(T) there exists p € C, p > 0;Ap =1tp.
if t > b(T') no such p exists.
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Let us illustrate the use of these ideas by dealing with the so-called uniformily fat
sets.

We have mentioned that if a plane domain Q has boundary of positive logarithmic
capacity then the covering group I' is of convergence type (and conversely).

For such a domain "nearly” every point on' 0Q is regular for the Dirichlet problem.
Domains for which Wiener’s criteria holds in a uniformly way are interesting in function
theory. Let us call a domain 2 , co € Q2 , uniformly fat (at the boundary) if

(r 2)cap(A(a,r)NON) > cr
for some constant ¢ > 0 and for all r < diamdf.

It is then easy to see that if Q is uniformly fat then some sort of uniform version of
convergence type holds. Namely, define the absolute Poincaré theta/zeta function.

U= Y eap(-length(}]:),

[v]€M(2,2)

where by length ([].) we mean the infimum of the lengths of the curves in [y], (= curves
homotopic to vy with z fixed).

Now, if § is uniformly fat then U € L*°(Q). (The condition U # oo is simply
convergence type).

We have:

* . if  Q is uniformily fat then §(T') < 1,

The converse is not true. One example is @ = A\ {0}.

Proof. of (*):°

The .Poincaré metric of  is conformal with the euclidean metric:

ds? = \q(2)?]dz|?
‘ Then:

(1) A(logh) = Ao’

This is simply a translation of the fact that ds has constant curvature —1.
It also satisfies '

(Schwarz' Lemma)

2
) Ao < dist(-, 0%)
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100
(2) [ViogAq| < Bist(, %) (BMO).

These facts, (1) and (2), are always true. Somehow one thinks of Aq as behaving like
dist(-,0Q)7", but actually this is the case exactly when Q is uniformily fat, (Beardon-

Pommerenke).

Thus, in our case:

C1
> -
® Aa 2 dist(-,09)"

for some constant ¢;. Combining (2) and (3) we have

(4) |Vioghal < ez - M.

If A is a smoothly bounded domain, 4 CC €, then by Green’s theorem and (1) and
(4) we have

Aq —area ofA= // Aoldzdy = // A(loghq)dzdy =
A A

= / Vioghq - 7i|dz| < 02/ Aaldz| =
A A
=c¢y-Aq — length of OA.

Thus we have an isoperimetric inequality.
But a well known general estimate due to Cheeger tells us that

b=

c— 2?2’

N

in particular, b > 0, and therefore § < 1.
The argument above uses quite a lot that Q is a plane domain. Thus:

Q.5.Does it follow for a Riemann surface M that § < 1 if U € L*?. What about
higher dimensions?.
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6. DIOPHANTINE ANALYSIS.
Considere the groups I' = SL(2,Z).
If ¢ € C(T) then 3g, €T so that | — ga(z)| < C¢ Imgna(z). This implies that

€ = g(0)] < CeImgn(?)

or

€ = gn(00)] < CeImgn(s)

o

a b .
If g~ (c d) then I'mg(:) = =i
We obtain that there exists an,Bn € Z, g.c.d.(an,Bn) =1 so that
an 1
— | < Ce¢—5-
-5 <“m

Which is Dirichlet’s theorem. And conversely. Thus C(T') = R\ Q. It is natural to
pursue this parallelism further.

Lets us recall some classical results of the metrical theory of Diophantine approxima-
tion.

(1) (Kintchine). Let w, be a sequence of positive numbers decreasing to 0 , and
such that wor > Cwy; k€ N. ’

Define K,, as the set of points for which the inequality
a,  wg
_ o< 22
¢ B < B2

. Ocurrs for infinitely many o, 8 € Z,(a, 8) = 1. Then |K,| =0or |R\ K,| =0 according
to Y w, < ooor Y w,=o0o.
(2) (Jarnik). Let J be the set of numbers £ such that
o Cf
_—— > p—_
1€ 5‘ 3
For every pair (o,) € Z?, (a,B)=1. Them

Dim(J) =1

(3) (Jarnik-Besicovitch). Let By, 7 > 1, be the set of those numbers ¢ so that:

@ Ce

lﬁ—ﬁlﬁw
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occurs for infinitely many pairs («, ) € 22, (a,f) = 1. Then

Dim(B,) =
=

If g € SL(2,R) we associate

wlg) =1Im  g(3) (= ﬁ)

The basic type of approximation we will be considering is the following

1€ — g()] < Ceplg).

We seek analogues of the previous theorems. This is an unfinished and, I think,
attractive job.

To start off let us outline how Kintchine’s result can be obtained. Let
Ay = {5 €0,1: 16~ 51 <%, for some a,B€ZB e (2*2") (a,f) = 1}.
The sets Ay satisfy a sort of independence, namely for a constant ¢ > 1

[Ak N Ajl < cl|Arll4;], k#J

and then a Borel-Cantelli argument gives that

an<oo = |{i.0.4x}| =0

(T) an = 0o = |{i.0. 4} >0

Finally, since i.0.A; is (eseentially) invariant under rational translations mod 1 the
conclusion of (T) improves itself to

IR\ {7.0.Ax}| =0 .
This argument works for finitely generated Fuchsian groups whose limit set is

R (the last ingredient is now the ergodicity of the action on R) . Also Jarnik’s result holds
in this context (Patterson) . But,

Q.6 What about Jarnik-Besicovitch for finitely generated fuchsian groups with
R as limit set ?.

Q.7 What about the three results for groups of divergence type 7.

More ambitiously:
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Let 6 = §(T') and assume that I is of divergence type at § then there is a Patterson
measure which gives full measure to C(I') and any two such measures are equivalent. Do
we have an analogue of Kintchine’s theorem or, more interestingly.

Q.8 Is it true that.
Dim({{: Vg € T, |€ — g(i)| 2 Cen(9)}) = 6
Dim({¢: for a séquence g, € T|6=ga(7)| < Cf;.t(g)t}) =6/t,ift > 17

Higher dimensions . Start from the béginning consider SL(2,Z + iZ) = T’ one
obtains:

{z:|z—f§|§ﬁ,’-l for infinitely many p,q € Z+1Z,ideal (p,q)'=Z+iZ}

have zero or full measure according to
Y wl<oo or < 0.

Q.9 Is there an analogue of Jarnik-Besicovitch 7.
7. ACTION ON S$™~1. MOSTOW'’S RIGIDITY THEOREM..

Finally, we describe the action of I" on S™"~!. We need the so-called horospherical
limit set A point £ € S™~! is a point of horospherical approach for I'(§ € H(T')) if I'(0)
enters. every horosphere base at £.

Clearly C(T') c H(I") c A(T). Also H(T') is I'-invariant. For geometrically finite
groups H(T') = A(T) . ’
We have:

The action of I on H(T') is conservative.
The action of T on S™~! \ H(T) is fully dissipative.
The action of ' on S™~! H(T) is fully dissipative iff H(T') has zero measure.

There is a nice potential-theory characterization due to Pommerenke of those Riemann
surfaces for which the action of the covering group on S* in fully dissipative. It is easier
to state in the case of plane domains. It says that they should be almost of finite type,
(I is finitely generated). Let M be a plane domain and I its covering group then
|H(T')| = 0 iff there exists finitely connected domains M, CC M exhausting M so that

w(-,0M, NOM,M) -1 as n — oo.

The potential theory on M is related in some other ways to the action of I on S!
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Let M be a Riemann surface with Green’s function G. Let II be the universal cover
from A onto M. Then '

1
oIl = log —
Goll =log Tk
where B is the Blaschke product whose zeroes are the orbit of 0 (II(0) = pole of G).
Then the fact that I' is fully dissipative is equivalent to the fact that the derivative of B
has finite non-tangential boundary values a.e. on S'.

The weakest growth condition on a function f analytic in A to guarantee that f has
finite non-tangential boundary values a.e. on S! is to belong to the Nevanlinna class. A
Riemann surface is termed Widom if B’ belongs to N. There is a gorgeons characteriza-
tion of this concept. It is due to Widom, of course. Fix a pole p; € M, and let

M@t)={z€ M:G(z,py) >t}
then {J,5o M(t) = M. Let B(t) = dimH*(M(t)) =first Betti number of M(t)

Then
M is Widom iff [ A(t) < oo.

There is a natural conjecture in this issue which I want to introduce. The boundary
values of B gives a measurable funtion from S! to S! which is measure preserving and
ergodic (actually, exact). What is his entropy?. Somehow B is like an f-expansion. The
conjecture is

B has finite entropy iff M is Widom

More ambitiously, let f be an inner function, f(0) = 0, then the entropy of f should
be given by

27
b = 5e [ loalf (e )ias
T Jo
Mostow’s rigidity theorem.

This is the most famous result obtained as a consequence of the ergodic behaviour of
Kleinian groups.

In its more essential presentation it claims that if two constant negative curvature
compact 3-manifolds are diffeomorphic then they are actually conformally equivalent. (The
result is true for complete finite volume n-manifolds of constant negative curvature.)

There is a simple proof of the n-dimensional case due to Ahlfors. But we shall consider
only the case n = 3. Compare the result with the situation for n = 2 where Riemann sur-
faces can be continuously deformed and with Liouville’s theorem asserting that conformal
mappings in R,,n > 3, are trivial(=Mobius).
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Let f: M — M', M, M', 3-manifolds as above, and f , diffeomorphism. Since M and
M' are compact then f is quasiconformal. Lift f to a quasiconformal map from B? onto
itself. By classical quasiconformal distortion theorems it can be "restricted” to 8B% = §2,
and this restriction is still q.c. and conjugates the boundary action of I" onto that of I".

Let u denote the complex dilation of f, i.e. the pull back of the euclidean metric can
be writen as  A(z)?|dz + u(z)dz|®. (This p measures the deviation from conformality ,

p € L(8%), || #llo< 1.)
The function p satisfies

7'(2)
,U,(’Y(Z) - l')"(z)'ﬂ(Z)

Thus it determines a vector field on S? which is invariant under I'. The whole point
is to show that p is necessarily = 0. Now, we shall see below that this follows since T’
is of divergence type and n = 3. But the fact that no such vector fleld exists on H(I")
(=the conservative part of the action of I' on S™~1) is true with no assumption on T' and
no restriction on dimension. Returning to the proof in our case. First |u| = cte , a.e.
(divergence type). If z,w € S%,z # w define oz, w) = angle(p(z), p(w)) measured along
the geodesic joining z, w. Then « is I-invariant and so (divergence type) constant, and
this is impossible (curvature = +1).
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