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Recently several papers have studied the preservation of
isomorphic properties of Banach spaces by operators satisfying
conditions weaker than those of the 1{isomorphisms, such as
semiembeddings, Gg-embeddings and tauberian operators. See, for
example (3], [4]1, [7], (91, [14], ([15], [16] and [17].

on the other hand the authors [11], [12] have introduced
semigroups canonically associated with some operator ideals
defined in terms of sequences.

In this paper we introduce a semigroup SRN containing the
Hé-embeddings of separable spaces, and the upper semi-Fredholm

operators SF but not the Gé-embeddings of separable spaces; it

’
is stable und;r perturbations in the operator ideal RN of all
Radon-Nikodym operators, and ité operators preserve the
Radon-Nikodym property RNP : If there exists T & SRN+(X.Y) and
Y has the RNP, then X has the RNP property as well. Banach
spaces without subspaces with the RNP are characterized in terms
of the coincidence of SRN_  and SF, . We also study another
semigroup SRN_ related with the 1lower semi-Fredholm operators

SF_ and Asplund Banach spaces Asp in a dual way.

Recall that an operator A e L(L‘.X) is representable 1if
there exists an X-valued Bochner-integrable function g in [0,1]
such that Af = S fg du for every f e L1.

Let K , T @ L(X,Y). K & RN : KA is representable for
every operator A from L into X.

1
T & SRN, An operator A from L into X is

: 1
reprasentable if (and only if) TA 1is representable.

PROPOSITION 2 Let K , T & L(X,Y) and S € L(Y,Z).
(a) If T e SRN+ then N(T) has the RNP.
(b) If S, Te SRN, and K< RN, then ST , T + K & SRN,.
(c) If Y has the RNP and T =« SRN_, then X has the RNP.
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EXAMPLES The following classes of operators are in SRN+:

(1) Upper semi-Fredholm operators.
(2) Products and restrictions of Hé-embeddings and
Fa~embeddings (semiembeddings under an equivalent norm) of

separable Banach spaces.

(3) The operators (I - AT) in L1(G) associated with a
well-founded tree on the set of integer numbers [2; Prop. 13].

we note that SRN+ does not contain all the Gé-embeddings
of separable spaces (see [10] for a counterexample).

The following result, central in our paper, is a consequence
of Lewis-Stegall characterization of Banach spaces with the RNP
in terms of the factorization of representable operators through
11 , and the 1ifting property of the space 11.
THEOREM 3 Let T « L(X,Y) an operator with closed range. If
N(T) has the RNP then T & SRN .

COROLLARY &4 (a) T e SRN*(X.V) if and only if N(T) has the
RNP and the associated injective operator T is in SRN .
(b) The class RNP has the three space property [5].

THEOREM 5 Let T € L(X,Y). T e SF* if and only if T € SRN*
and the restriction TIN is in SF_ for every subspace M of X
with the RNP.

THEOREM 6 A Banach space X has an infinite dimensional subspace
with the RNP 1if and only there exist a Banach space Y and an
operator T € SRN*(X,Y) which is not upper semi-Fredholm.

COROLLARY 7 For every separable Banach space X without infinite
dimensional subspac2s with the RNP, each semiembedding of X 1is
an isomorphism. If, in addition, =2ach subspace of X contains an

unconditional basic sequence, then X 1is heraditarily ¢

Next we study the dual semigroup SRN_. Recall that a Banach
space X 1is Asplund if and only if its separable subspaces have
separable dual; or equivalently, the dual X' has the RNP [18].

DEFINITION 8  SRN_(X,Y) i= { T & L(X,¥) / T' & SRN, }
RNY(X,Y) = £ K & L(X,Y) / K' € RN }



PROPOSITION 9. (1) SRN _ is a semigroup stable under
parturbations of the opa2rator ideal RNd.

(2). If T e SRN_(X,Y), then VY/R(T) 1is an Asplund space.

THEOREM 10 L2t T = L(X,Y) with closed range. If Y/R(T) is
Asplund, then T € SRN_.

Finally we characterize 1lower semi-Fredholm operators and
spaces without infinite dimensional Asplund quotients.

For a subspace N of Y, ay is the quotient map onto Y/N.

THEOREM 11 Let X, Y be Banach spaces, and T € L(X,Y).

(a) T e SF_ if and only if T @ SRN_ and ayT € SF_ for
every subspace N of Y such that Y/N 1s an Asplund space.

(b) Y has no infinite dimensional Asplund quotients if and
only if SRN_(Z,Y¥) = SF_(Z,Y) for avery Banach space Z.
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