UNCONDITIONALLY CONVERGING OPERATORS AND FREDHOLM THEORY

Manuel Gonzalez, University of Santander, Spain. Victor M. Onieva, University of Zaragoza, Spain.

In [7] tauberian operators were studied as a class of operators with opposite properties to that of the weakly compact operators. Recently we have introduced in [3], [4] classes of operators associated with the (weakly) completely continuous and 1-singular operators and its conjugates in analogous way as tauberian operators are associated with weakly compact operators. We were able to extend the results of [7] to these new classes, using essentially lifting results for bounded, weakly Cauchy and (weakly) convergent sequences [5] similar to that of Lohman [8].

In this paper, by using results of Bessaga and Pelczynski about basic sequences and unconditionally converging (UC) operators [1], [10], [11], we study two new classes of operators SUC, and SUC_ associated with the UC operators. We prove a lifting result for unconditionally converging series which allow us to extend some results of [3], [4], [7] to this situation. Specifically, we characterize semi-Fredholm operators, somewhat-cobanach spaces (each infinite dimensional subspace contains coband quowhat-1, Banach spaces (each infinite dimensional quotient has a quotient isomorphic to 1_1) in terms of the two operator classes here introduced.

T \in L(X,Y) is upper (lower) semi-Fredholm if the range R(T) is closed and the kernel N(T) (cokernel Y/ $\overline{R(T)}$) is finite dimensional.

A series Σ x in a Banach space X is weakly unconditionally Cauchy (w.u.C.) if Σ $|f(x_n)| < \infty$ for $f \in X'$.

 $K \in L(X,Y)$ is unconditionally converging if it sends w.u.C. series in X into unconditionally convergent series in Y [10].

T \subseteq L(X,Y) belongs to SUC, if given a w.u.C. series $\Sigma \times_n$ in X, $\Sigma \times_n$ unconditionally convergent implies $\Sigma \times_n$ unconditionally convergent.

T belongs to SUC_ if the conjugate T' € SU_.

It is clear from the definition that SUC_{\downarrow} and SUC_{\downarrow} are semigroups (stable by product). Moreover we have the following results.

Proposition 2 Let T, $K \in L(X,Y)$.

- (a) If $T \in SUC_+$ and $K \in UC_+$ then the kernel N(T) contains no copies of C_0 and $T + K \in SUC_+$.
- (b) If $T \in SUC_1$ and $K' \in UC_2$, then the cokernel $Y/\overline{R(T)}$ contains no complemented copies of 1, and $T + K \in SUC_1$.

We observe that SUC_+ is a class of generalized upper semi-Fredholm operators for which the unconditionally converging operators and the spaces with no copies of c_0 play the role of the compact operators and the finite dimensional spaces of the classic theory. A similar remark is in order for SUC.

Proposition 3 Let X, Y be Banach spaces.

- (a) If Y contains no copies of c_0 and there exists an operator T in $SUC_+(X,Y)$, then X contains no copies of c_0 .
- (b) If X contains no complemented copies of l_1 and there exists an operator T in SUC_(X,Y), then Y contains no complemented copies of l_1 .

Theorem 4 Let X be a Banach space, M a subspace of X containing no copies of c_0 , and q the quotient map onto X/M. If Σ x_n is a w.u.C. series in X such that Σ qx_n is convergent, then Σ x_n is convergent.

Given a subspace M of a Banach space X we denote by $i_{\,\text{M}}$ the inclusion of M, and by $q_{\,\text{M}}$ the quotient map onto X/M.

Theorem 5 Let $T \in L(X,Y)$.

- (a) T is upper semi-Fredholm if and only if T \leq SUC, and for every subspace M of X containing no copies of c_0 , the restriction Ti_M is upper semi-Fredholm.
- (b) T is lower semi-Fredholm if and only if T \in SUC_ and for every subspace N of Y with Y/N containing no complemented copies of 1_1 the operator q_N^T is lower semi-Fredholm.

A Banach space Y is somewhat- $c_{\rm o}$ if every infinite dimensional subspace of Y contains a copy of $c_{\rm o}$; and Y is quowhat- $l_{\rm 1}$ if every infinite dimensional quotient of Y has a quotient isomorphic to $l_{\rm 1}$.

Theorem 6 Let Y be a Banach space.

- (a) Y is somewhat-c $_{\rm O}$ if and only if for every Banach space Z each operator in SUC $_{\rm I}$ (Y,Z) is upper semi-Fredholm.
- (b) Y is quowhat-1 if and only if for every Banach space X each operator in $SUC_{(X,Y)}$ is lower semi-Fredholm.

REFERENCES

- [1] Bessaga, C.; Pelczynski, A. "On bases and unconditional convergence of series in Banach spaces" Studia Math. 17 (1958), 151-164.
- [2] Drewnowski, L. "Semi-embeddings of Banach spaces which are hereditarily c $_{
 m o}$ ". Proc. Edinburgh Math. Soc. 26 (1983), 163-167.
- [3] Gonzalez, M. and Onieva, V.M. "Semi-Fredholm operators and semigroups associated with some classical operator ideals". Proc. R. Ir. Acad. 88A (1988), 35-38. EXTRACTA MATHEMATICAE 3.1 (1988).
- [4] Gonzalez, M. and Onieva, V.M. "Semi-Fredholm operators and semigroups associated with some classical operator ideals II". Proc. R. Ir. Acad.(to appear). EXTRACTA MATHEMATICAE 3.2 (1988).
- [5] Gonzalez, M. and Onieva, V.M. "Lifting results for sequences in Banach spaces". Math Proc. Cambridge Phil. Soc. (to appear, 1988). EXTRACTA MATHEMATICAE 3.1 (1988).
- [6] Harte, R. "Invertibility and singularity for bounded linear operators". New York. M. Dekker, 1988.
- [7] Kalton, N.J. and Wilansky, A. "Tauberian operators in Banach spaces". Proc. Amer. Math. Soc. 57 (1976), 251-255.
- [8] Lohman, R.H. "A note on Banach spaces containing 1_1 ". Canad. Math. Bull. 19 (1976), 365-367.
- [9] Neidinger, R.D. "Properties of tauberian operators in Banach spaces". Ph. D. Univ. Texas (1984).
- [10] Pelczynski, A. "Banach spaces on which every unconditionally converging operator is weakly compact" Bull. Acad. Polon. Sci. 10 (1962), 641-648.
- [11] Pelczynski, A. "On strictly singular and strictly cosingular operators" Bull. Acad. Polon. Sci. 13 (1965), 31-41.
- [12] Pietsch, A. "Operator ideals" North-Holland, 1980.