SEMI-FREDHOLM OPERATORS AND SEMIGROUPS ASSOCIATED WITH SOME CLASSICAL OPERATOR IDEALS II

M. Gonzalez, Facultad de Ciencias, Santander, Spain.
V.M. Onieva, Facultad de Matematicas, Zaragoza, Spain.
AMS Classification (1980): 47A53, 47D30.

In [3] (see also [4]) we studied semigroups SU_+ associated with operator ideals U defined in terms of sequences as Co: Compact, WCo: weakly compact, Ro: Rosenthal, CC: completely continuous and <math>WCC: weakly completely continuous operators.

In this note we complete some results in [3] and introduce another semigroups SU_{-} for the above operator ideals, and some others defined in terms of w^{*} -convergence of sequences in dual spaces. We prove that the semigroups SU_{-} are stable by addition of operators in the corresponding U_{+} and other basic properties. From this we derive characterizations for lower semi-Fredholm operators SF_{-} in terms of the semigroups SU_{-} , and for certain coincomparability classes of Banach spaces [1] by means of SF_{-} .

For $U \in (Co, WCo, Ro, CC, WCC)$, we denote $U^{d} := (K \in L \ / \ K' \in U) \quad \text{and} \quad SU_{-} = (T \in L \ / \ T' \in SU_{+})$ The definition of SU_{+} can be found in this journal [4].

Moreover, for the operator ideals Gr: Grothendieck [5], Lm: limited [2], and Cd: condensed, we define $T \in L(X,Y) \quad \text{belongs to } SGr_ \quad (resp. SLm_, SCd_) \quad \text{if every}$ w*-convergent sequence (f_n) in Y' such that $(T'f_n)$ is

w-convergent (resp. convergent, w-Cauchy), has a w-convergent (resp. convergent, w-Cauchy) subsequence.

Theorem. Suppose U \in (Co, WCo, CC, Ro, WCC, Gr, Cd); denote V := U for Gr and Cd, V := U^d = (K \in L / K' \in U) in the remaining cases, and let T \in L(X,Y). Then we have

- (1) SU is a semigroup which contains SF_.
- (2) $T + K \in SU_{\perp}$ for every $T \in SU_{\perp}$ and $K \in V$.
- (3) If $T \in SU_{\underline{V}}$ then $Y/\overline{R(T)} \in Sp(V) = \{X / I_{\underline{X}} \in V\}$.
- (4) If R(T) is closed and $Y/R(T) \in Sp(V)$ then $T \in SU_{-}$.
- (5) $T \in SF_{-}$ if and only if $T \in SU_{-}$ and $q'_{N}T \in SF_{-}$ for every $Y/N \in Sp(V)$.
- (6) $SF_{(Z,Y)} = SU_{(Z,Y)}$ for any Banach space Z if and only if $Y \in Sp(V)^C = (X \text{ without infinite-dim. quotients in } Sp(V)).$
- (7) $SLm_= SF_.$

Observations.

- 1. For U=Co, WCo, CC, Ro, or WCC, the coincomparability classes $\mathrm{Sp}(U^{\mathrm{d}})^{\mathrm{C}}$ are respectively the finite dimensional spaces; and the spaces without infinite dimensional quotients in the classes of reflexive. Dunford-Pettis without copies of l_1 , without copies of l_1 nor c_0 quotients, and weakly sequentially complete dual spaces.
- 2. In [6] upper semi-Fredholm operators in Hilbert space are characterized as those $T \in L(H)$ for which given a weakly null sequence (x_n) such that (Tx_n) is norm null, we have that (x_n) is norm null (Wolf condition).

We showed in [3] that the above condition characterize $SF_{+}(X,Y) \quad \text{for} \quad X,Y \quad \text{Banach exactly when} \quad X \quad \text{has no copies of} \quad 1_{1}.$ Noting that Hilbert spaces are reflexive; hence all operators are conjugate $\quad (T = T^{++}) \quad \text{and} \quad \text{the topologies weak and weak}^{*} \quad \text{are}$ the same, the above proposition shows that the right extension of

Wolf condition to general Banach spaces, characterizing conjugate operators in SF_+ , is the following assertion, which is obviously equivalent to the definition of SLm_- :

If (f_n) is weak null and (T^*f_n) is norm null, then (f_n) is norm null.

3. In [4] we considered the class WSC^1 of all Banach spaces without infinite dimensional WSC subspaces. Because c_0 is not weakly sequentially complete, it is clear that $Swc_0 \subset WSC^1$, where Swc_0 is the class of all somewhat— c_0 Banach spaces for which every infinite dimensional subspace has a copy of c_0 . The equality is equivalent with the James tricothomy problem:

 $\label{eq:wsc} \mathbf{Wsc}^1 = \mathbf{Swc}_0 \quad \text{if and only if every Banach space contains } \mathbf{c}_0.$ 1, or an infinite-dimensional reflexive subspace.

REFERENCES

- [1] Alvarez, T.; Gonzalez, M. and Onieva, V.M. 1987 Totally incomparable Banach spaces and three-space Banach space ideals. Math. Nachr. 131, 83-8.
- [2] Bourgain, J.; Diestel, J. 1984 Limited operators and strict cosingularity. Math. Nachr. 119, 55-8.
- [3] Gonzalez, M. and Onieva, V.M. 1988 Semi-Fredholm operators and semigroups associated with some classical operator ideals. Proc. R. Ir. Acad. (to appear).
- [4] Extract of [3] in EXTRACTA MATHEMATICAE 3 (1988), 34-36.
- [5] Pietsch, A. 1980 Operator ideals. Amsterdam. North-Holland.
- [6] Wolf, F. 1959 On the essential spectrum of partial differential boundary problems. Comm. Pure Appl. Math. 12, 211-28.