Almost Everywhere Convergence of Fourier Integrals in \mathbb{R}^n .

Anthony Carbery* (University of Sussex, Brighton BN1 9QH, United Kingdom)

Fernando Soria* (Universidad Autónoma de Madrid, 28049 Madrid, Spaln)

A.M.S. (1980) Subject Classification: 42B10, 42B15, 42B25

For suitable f, defined on \mathbb{R}^n , $n\geq 2$, we let $\widehat{f}(\xi)=\int_{\mathbb{R}^n}f(x)\ e^{-2\pi ix.\xi}\ dx$, and

 $S_R f(x) = \int_{|\xi| \le R} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$. In this note we wish to announce some results concerning classes of functions for which almost everywhere convergence of $S_R f$ holds, i.e.

$$\lim_{R\to\infty} S_R f(x) = f(x) \quad \text{a.e.}$$
 (1)

We also consider the lacunary problem

$$\lim_{k\to\infty} S_2 k f(x) = f(x)$$
 a.e. (2)

Classical results on the unit circle T include (with Sk the kth partial sum operator)

- i) (2) fails for some f in L1 (T) (Kolmogorov)
- ii) If $f \in L^1(T)$ vanishes in some open set Ω , then (1) holds on Ω (Riemann localisation principle)
- iii) (1) holds uniformly in x if f is continuous and (w(t) denoting the L^{∞} modulus of continuity) $\int_{0}^{1} w(t) dt/t < \infty$ (Dini test)
- iv) Uniform convergence of (1) does not hold in general for continuous functions (du Bois Reymond)
 - v) (1) holds for $f \in LP(T)$ if 1 (Carleson [2], Hunt[4])

Theorem 1. If $f \in L^p(\mathbb{R}^n)$, with $2 \le p < 2n/(n-1)$, $n \ge 2$, and f = 0 on an open set Ω of \mathbb{R}^n , then (1) holds a.e. on Ω

^{*}Both authors were partially supported by Acciones Integradas grants nos. SPN/991/3/40/ (86-87 and 87/88)

<u>Remark</u>. This range of p is the best we can hope localisation to hold for: Fefferman's theorem [3] shows it cannot hold for p<2 (since n≥2), and elementary considerations show that p<2n/(n-1) is necessary. An earlier variant of Theorem 1 where f was assumed to have compact support was obtained by Sjölin [5].

Theorem 1 is a consequence of the following weighted L^2 estimate: Let K_R be the convolution kernel of S_R , and let $T_R{}^j$ be the operator whose kernel is $K_R(x)$ $\psi(x/2^j)$, where ψ is a smooth function of compact support satisfying $\sum_{j\geq 1} \psi(x/2^j) \equiv 1$ in the set $\{x: |x|\geq 2\}$

Theorem 2. Let $0 \le \beta < n/2$ and $\gamma > max(\beta-1/2, 0)$. Then,

$$\int_{\mathbb{R}^{n}} \sup_{R>1} \left| \sum_{j\geq 1} T_{R}^{j} f_{j}(x) \right|^{2} \, dx/|x|^{2\beta} \, \leq \, C_{\beta,\gamma} \sum_{j\geq 1} \, 2^{2\gamma j} \int_{\mathbb{R}^{n}} |f_{j}|^{2} \, dx/|x|^{2\beta}$$

The techniques used to prove Theorem 2 derive in part from [1] and ultimately from [6]. It is worth noting that, in [1], the following theorem is also proved

<u>Theorem A.</u> If $2 \le p < 2n/(n-1)$, then (2) holds for $f \in L^p(\mathbb{R}^n)$.

We now turn to see how the situation may improve if we assume some smoothness of f.

Theorem 3. If
$$\int |\hat{f}(\xi)|^2 (1+\log^+|\xi|)^2 d\xi < \infty$$
, then (1) holds.

For $1 \le p < \infty$, and $\alpha > 0$, let $L_{\alpha} P(\mathbb{R}^n) = \{ f : [(1+|\xi|^2)^{\alpha/2} \ \hat{f}(\xi)] \in L^p(\mathbb{R}^n) \}$ be the Sobolev space of functions on \mathbb{R}^n whose derivatives up to order α are in $L^p(\mathbb{R}^n)$. Theorem 3 clearly implies the case p = 2 of the following theorem

Theorem 4. If $f \in L_{\alpha}p(\mathbb{R}^n)$, with $2 \le p < 2n/(n-1)$, $\alpha > 0$, then (1) holds. To conclude the discussion of the case $p \ge 2$, we state Theorem 5, which may regarded as an analogue for \mathbb{R}^n of Dini's test

<u>Theorem 5.</u> Let $n \ge 2$. If $f \in L_{(n-1)/2}^{2n/(n-1),1}(\mathbb{R}^n)$, then $S_R f$ converges to f uniformly.

(Here $L_{\alpha}^{p,1}(\mathbb{R}^n)$ is the space of functions whose derivatives up to order α are in the Lorentz space $L^{p,1}$.) For p < 2, much less is known. A surprising result (perhaps) is

<u>Theorem 6.</u> Let $n \ge 2$. If $f \in L_{(n-1)/2} ^1(\mathbb{R}^n)$, then (1) holds. Notice that Kolmogorov's example shows this theorem fails when n=1. We also have

Theorem 7. If n=2 and $\alpha>0$ or if n≥3 and $\alpha>(n-1)/2(n+1)$, (2) holds for $f\in L_{\alpha}p(\mathbb{R}^n)$ whenever $2n/(n+1+2\alpha) .$

The reader will notice that Theorem 7 holds precisely for those α , p and n for which the Bochner-Riesz multipliers $(1-|\xi|^2)_+^{\alpha}$ are known to give bounded operators on $L^p(\mathbb{R}^n)$; in fact, a close connection with Bochner-Riesz theory characterizes all stages of this work.

REFERENCES

- [1] A. Carbery, J. L. Rubio'de Francia and L. Vega, "Almost everywhere summability of Fourier Integrals". J. London Math. Soc., to appear
- [2] L. Carleson, "On convergence and growth of partial sums of Fourier Series". Acta Math. 116 (1966)
- [3] C. Fefferman, "The multiplier problem for the ball". Annals of Math. 94 (1971)
- [4] R. Hunt, "On the convergence of Fourier Series". Proc. of Conf. at South Illinois University, Carbondale (1967)
- [5] P. Sjölin, "Two theorems on Fourier Integrals and Fourier Series". Uppsala University, Report n.3 (1986)
- [6] L. Vega, El multiplicador de Schrödinger, la función Maximal y los operadores de Restricción. Ph. D. Thesis, U. Autónoma de Madrid, 1988