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A .
For suitable f, defined on R", n>2, welet  f(§) = IR" f(x) e-2mix.§ dx , and
A 2 . 6
Sgf(x) = I IE|<R f(€) @2™X-S d€ . In this note we wish to announce some results
concerning classes of functions for which aimost everywhere convergence of Sgf holds, i.e.
lim g.,. Sgi(x) = f(x) a.e. (1
We also consider the lacunary problem

lim . Spkf(x) = f(x) ae. (2)

Classical results on the unit circle T include (with Sy the K'th partial sum operator)
i) (2) fails for some fin L1(T)  (Kolmogorov)

i) If f€ L1 (T) vanishes in some open set Q, then (1) holds on Q (Riemann

localisation principle)
iii) (1) holds uniformly in x if f is continuous and (w(t) denoting the L
modulus of continuity) I 01 w(t) dt/t < oo (Dini test)

iv) Uniform convergence of (1) does not hold in general for continuous
functions (du Bois Reymond)

v) (1) holds for fELP(T) if 1<p<eo (Carleson [2], Hunt[4])

Theorem 1. If feLP(R™), with 2 < p < 2n/(n-1), n22, and f=0 on an open

set Q of R", then (1) holds a.e. on Q
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Bemark. This range of p is the best we can hope localisation to hold for: Fefferman's
theorem [3] shows it cannot hold for p<2 (since n>2), and elementary considerations show
that p<2n/(n-1) is necessary. An earlier variant of Theorem 1 where f was assumed to have
compact support was obtained by Sjélin [5].

Theorem 1 is a consequence of the following weighted L2 estimate: Let Kg be the convolution

kernel of Sg, and let Tpi be the operator whose kemel is Kg(x) ¥ (x/2]), where v is a

smooth function of compact support satisfying ij1v(x/21)51 inthe set {x:|x| 22}

Theorem 2. Let O<p<n/2 and y > max(B-1/2, 0). Then,

| R" SUP q. 4 |ij1 Teit(x)|? dwx2P < g Zm 228iIRn 112 dx/|x2P

The techniques used to prove Theorem 2 derive in part from [1] and ultimately from [6]. It
is worth noting that, in [1], the following theorem is also proved

Theorem A. If 2 <p < 2n/(n-1), then (2) holds for feLP(R").

We now tumn to see how the situation may improve if we assume some smoothness of f.

Theorem 3. If | [f(€)2 (1+log*|€])2 dE < e, then (1) holds.

\

For15p <o, and >0, let LoP(R™) = { f: [(1+]€]2)*/2 T(€)] €LP(R™) } be the

Sobolev space of functions on R" whose derivatives up to order  are in LP(R™).

Theorem 3 clearly implies the case p = 2 of the following theorem

Theorem 4. Iffe Lo P(R™), with 2<p < 2n/(n-1), « >0, then (1) holds.

To conclude the discussion of the case p 2 2, we state Theorem 5, which may regarded as an

analogue for R" of Dini's test
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Theorem 5. Letn 2> 2. If fEL, ) ,2V(n-1.1(R"), then Sgf converges to

f

uniformly.

(Here Lup.1(R") is the space of functions whose derivatives up to order & are in the

Lorentz space LP.1 .) For p < 2, much less is known. A surprising result (perhaps) is

Theorem 6. Letn22. IffeL ,,),1(R"), then (1) hoids.

Notice that Kolmogorov's example shows this theorem fails when n=1. We also have

Theorem 7. If n=2 and «>0 or if n23 and «>(n-1)/2(n+1), (2) holds

for feL P(R™ whenever 2n/(n+1+2x) <p <2.

The reader will notice that Theorem 7 holds precisely for those «, p and n for which the

Bochner-Riesz multipliers (1-|€[2),* are known to give bounded operators on LP(R");

in fact, a close connection with Bochner-Riesz theory characterizes all stages of this work.
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