VARIETIES OF NILPOTENT LIE ALGEBRAS OF DIMENSION LESS THAN 8

bv

José-María ANCOCHEA-BERMUDEZ and Michel GOZE

J.M.A.B. Departamento de Geometría y Topología. Facultad de Matemáticas. Universidad Complutense. 28040 MADRID (SPAIN).

M.G. Université Haute Alsace.F.S.T. 4, rue des Frères Lumière. 68093 MULHOUSE Cédex. (FRANCE).

A.M.S. Clasification (1980): 17B30

Let Nⁿ be the variety of n-dimensional complex nilpotent Lie algebra laws. Let us consider the "change of basis" action of $\mathrm{GL}(n,\mathbb{C})$ on \mathbb{N}^n and let us denote by $\theta(\mu)$ the orbit of the law μ in N^n under the above action. If $n \le 6$, it is well known (see [5], [6], [7]) that N^n is irreducible and there exists a rigid filiform law μ_n^1 in N^n (that is, the orbit of μ_n^1 is open), and therefore N^n is the Zariski closure of $\theta(\mu_n^1)$. Never theless, N^7 is irreducible (see [3], [6], [7]) and it contains no rigid nilpotent Lie algebra (see [1],[4]). In this note the classification of complex nilpotent Lie algebras of dimension 7 obtained in [4] is used to prove that N⁷ has precisely two irreducible components, both of dimension 40, which are respectively the Zariski closures of the orbits of a family $(\{\mu_{\alpha}^1\}_{\alpha \in \mathbb{C}})$ of filiform algebras, and a family $(\{\mu_{\alpha}^2\}_{\alpha \in \mathbb{C}})$ of characteristically nilpotent algebras. It is also shown that in \mathbb{N}^8 there exist at least two irreducible components intersecting the open subset of all filiform Lie algebras, and one of which is the closure of the orbit of a rigid law in N⁸; this is a counterexample of the conjecture: "there exists no rigid nilpotent Lie algebra in Nⁿ for n≥7: given by M. Vergue in [7]. THE VARIETY N[']

Considerer the families $\{\mu_{\alpha}^1\}_{\alpha \in \mathbb{C}}$ and $\{\mu_{\alpha}^2\}_{\alpha \in \mathbb{C}}$ of Lie algebra laws in N⁷ given by

.
$$\mu_{\alpha}^{1}(X_{1}, X_{1}) = X_{1-1}$$
, i=3,4,5,6,7; $\mu_{\alpha}^{1}(X_{4}, X_{7}) = \alpha X_{2}$; $\mu_{\alpha}^{1}(X_{5}, X_{6}) = X_{2}$; $\mu_{\alpha}^{1}(X_{5}, X_{7}) = (1+\alpha)X_{3}$; $\mu_{\alpha}^{1}(X_{6}, X_{7}) = (1+\alpha)X_{4}$, with $\alpha \in \mathbb{C}$.

$$\begin{array}{l} \cdot \ \mu_{\alpha}^{2}(x_{1},x_{1}) = x_{1-1}, \ \ i = 4,5,6,7; \ \ \mu_{\alpha}^{2}(x_{2},x_{6}) = x_{3}; \ \ \mu_{\alpha}^{2}(x_{2},x_{7}) = x_{3} + x_{4}; \\ \mu_{\alpha}^{2}(x_{5},x_{7}) = \infty x_{3}; \ \ \mu_{\alpha}^{2}(x_{6},x_{7}) = \infty x_{4} + x_{2}, \ \ \text{with} \ \ \alpha \in \mathbb{C}. \end{array}$$

where the indefined products are supposed to be zero.

Proposition. If $\alpha \neq \alpha'$ (respectively $\alpha \neq +\alpha'$), then the laws μ_{α}^{1} and $\mu_{\alpha'}^{1}$, (resp. μ_{α}^{2} and $\mu_{\alpha'}^{2}$) are not isomorphic.

 $\begin{array}{c} \underline{\text{Proposition. The families}} \ \{\mu_{\alpha}^{1}\}_{\alpha\, \epsilon\,\, \mathbb{C}} \ \underline{\text{and}} \ \{\mu_{\alpha}^{2}\}_{\alpha\, \epsilon\,\, \mathbb{C}} \ \underline{\text{are rigid in the}} \\ \underline{\text{following sense: Any perturbation}} \ \mu \ \underline{\text{of a standard element}} \ \mu_{\alpha}^{1} \ (\underline{\text{resp.}} \ \mu_{\alpha}^{2}) \\ \underline{\mu_{\alpha}^{2}}) \ \underline{\text{is isomorphic to a law in the family}} \ \{\mu_{\alpha}^{1}\} \ (\underline{\text{resp.}} \ \{\mu_{\alpha}^{2}\}) \ \underline{\text{Moreover,}} \end{array}$ there is no contraction between different standard members of these families.

We recall that μ is a perturbation of a standard law μ_1 of N^{th} if μ Nⁿ and the structure constants relative to a standard basis in ${f c}^n$ are infinitely close. Also, the standard law $\boldsymbol{\mu}_{\boldsymbol{1}} \quad \boldsymbol{N}^{n}$ can be contracted on the standard law $\mu_2 \in \mathbb{N}^n$ if is a $f \in GL(n, \mathbb{C})$ such that $f^{-\frac{1}{2}}\mu_1 \cdot (f \times f)$ is a perturbation of μ_2 .

Proposition. All nilpotent standard laws in N⁷ can be perturbed

into a law in the families $\{\mu_{\alpha}^{1}\}_{\alpha \in \mathbb{C}}$ or $\{\mu_{\alpha}^{2}\}_{\alpha \in \mathbb{C}}$.

Theorem: The closures of the orbits of $\{\mu_{\alpha}^{1}\}_{\alpha \in \mathbb{C}}$ and $\{\mu_{\alpha}^{2}\}_{\alpha \in \mathbb{C}}$. are the only irreducible components in N⁷. Moreover, both components have dimension 40.

II. THE VARIETY N8

Let μ be the following law:

$$\begin{split} & \mu\left(X_{1},X_{1}\right) = X_{1-1}, \ \ i = 3,4,5,6,7,8; \ \ \mu\left(X_{4},X_{7}\right) = X_{2}; \ \ \mu\left(X_{4},X_{8}\right) = X_{2} + X_{3}; \\ & \mu\left(X_{5},X_{6}\right) = -X_{2}; \ \ \mu\left(X_{5},X_{7}\right) = -\frac{2}{5}X_{2}; \ \ \mu\left(X_{5},X_{8}\right) = X_{4} + \frac{3}{5}X_{3}; \\ & \mu\left(X_{6},X_{7}\right) = -\frac{2}{5}X_{3}, \ \ \mu\left(X_{6},X_{8}\right) = X_{5} + \frac{1}{5}X_{5}; \end{split}$$

Proposition. The law μ is the only rigid filiform law in N⁸ (if [2]). Therefore, the closure of $\theta(\mu)$ is an irreducible component of N^8 . Considerer the family of filiform algebras in N⁸ defined by; $\mu_{\alpha}(X_{1},X_{1})=X_{1-1}$, i=3,4,5,6,7,8; $\mu_{\alpha}(X_{4},X_{8})=\alpha X_{2}$; $\mu_{\alpha}(X_{5},X_{7}=X_{2};$ $\mu_{\alpha}(X_{5},X_{8}) = (1+\alpha)X_{3} + X_{2}; \ \mu_{\alpha}(X_{6},X_{7}) = X_{3}; \ \mu_{\alpha}(X_{6},X_{8}) = (2+\alpha)X_{4} + X_{3};$ $\mu_{\alpha}(X_{7}, X_{8}) = (2+\alpha)X_{5} + X_{4} \text{ with } \alpha \in \mathbb{C} \setminus \{-\frac{2}{5}\}.$

Proposition. The laws in the preceding family are not isomorphic. Moreover, no standard law in this family can be perturbed on μ . Therefore, the variety N⁸ has at least two irreducible components which interseet the open subset of filiform algebras.

REFERENCES.

- [1]. J.M. ANCOCHEA BERMUDEZ and M. GOZE. Sur la classification des algèbres de Lie nilpotentes de dimension 7. C.R. Acad. Sc. Paris, t. 302. p. 611-613 (1986).
- [2]. J.M. ANCOCHEA BERMUDEZ and M. GOZE. Classification des algèbres de Lie filiformes de dimension 8. (to appear in Arch. der Math.)

- [3]. R. CARLES. Sur les algèbres de Lie caracteristiquement nilpotentes. Preprint Univ. de Poitiers.
- [4]. M. GOZE and J.M. ANCOCHEA BERMUDEZ. Classification des algèbres de Lie nilpotentes complexes de dimension 7. (to appear in Arch. der Math.)
- [5]. F. GRUNEWALD and J. O'HALLORAN. Varieties of nilpotent Lie algebras of dimension less than six. J. Algebra 112. p. 315-325. (1988)
- [6]. M. VERCNE. Sur la variété des lois nilpotentes. These 3-ème cycle. Paris (1966).
- [7]. M. VERCNE. Cohomologie des algèbres de Lie nilpotentes. Application a l'étude de la variété des algèbres de Lie nilpotentes. Bull. Soc. Math. France 98. p. 81-116 (1970).