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Several properties of compactoid sets in Locally
convex spaces E over non-archimedean valued fields K are
proved in this paper. As a consequence we derive partial
afirmative answers to the following questions:

l. Let A be a compactoid set in £. JDoes there
exIst a compact set X in L such that A I contarined in
the closed absolutely convex iHull of X7 (GRUSON and VAN DER
PUT (3], problem following 5.8).

20 Let A be a complete c ‘-compact set in £. JDoes
It follows that A Is the closed absolutely convex hull of
Some compact se!t X7 (SCHIKHOF [6], problem following 1.7).

F. IS every weakly c ‘—compact set in £ c ‘=compact?
(SCHIKHOF [8], problem following 2.7).

A subset A of E 1is compactora (101 if for each
neighbourhood U of O in E there exists a finite set F
c E such that A < U + C(F) (where C(F) denotes the
absolutely convex hull of F); An absolutely convex set A <
E 1is c‘-compact [71 if in the above we may choose F cA.

First wve give afirmative answers to problems 1 and 2
in this paper, for locally convex spaces with a .Sclhauder
basls (the concepts of Schauder an orthogonal basis we
consider here are in [(21).

THEOREM 1. (C4]1, theorem 3.2) ZLet £ be & lJocally
convex space wWith a Schauvder Lasris such that £ FK4
o (F,.E')-sequentally complete and £’ Is o (E',E)- sequentally
complete.

a) Assume that the bLasis on £ I8 an orthogonal
basis. Then, every compactoid subset of £ Is contained in

the closed absolutely convex hull of a sequence ¥, in &
wreh Ilim )’” = O,
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b) Assume that the valuation on K Is dense. Then,
every c ‘-compact and complete subset of 5 Is lhe closed
avsolutely convex hull of a sequence (y, ) in £ wIith
lim )'” = 0.

REMARKS 1. For an example showing that just "E has a
Schauder basis" in part a) of theorem 1 it is not enough,
see [6] note to theorem 2.1.

2. Observe that if |K| is discrete, then problem 1 in
this paper has an afirmative answer for every locally convex
space over K. It is a direct consequence of (6], theorem
1.5.

Now we study problem 3 in this paper for locally
convex spaces with duals of countable type. For that, we
denote by Eé the dual space E' endowed with the locally
convex topology defined by the family of non—-archinedean
senminorms (||.||A t A is weakly c'—compact in E ) given by
[1£]1, = ;:i |f(x)| (f= E',A weakly c'-compact). Then, in

the same wein as theorem 8.3 of [S5] we obtain,

THEOREM 2. Zet £ be an strongly polar space (see
[S] for this concept) . Zhen., the rfollowing properiies are
eguivalent:

1) £ Is of countable type.

Ir) Every weakly c '-compact subset of £ Is weakrly
metrizable.

I17) Every weakly c '-compact subset of & s
metrizadle and compactoid.

Proof. 1)-+ii) and iii)ai) follow from (9], theorem
S.1l.

1ii)+iii): similar to a)ab) in theorem 8.5 of [51].

COROLLARY. Zet £ Lbe an strongly polar space. THhen.
1f E'C: 18 of countable type, every wveakly c '-compact set In
£ Is c’'-compact.

furthermore,, i1Ff £ I metrizable, then problem 3 in
this paper has an afirmative answver for £E I1f and only Iif
E'C: 193 of countable type.

Also, as a consequence of proposition 3 of [1 ] we
have an afirmative answer to our problem 3 in the following
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case:

THEOREM 3. Zet & Le a weakly gquasicomplete space
(e.g. a reflexive space) over an spherically complete valued
field K. Then., every wearly c '-compact subsel of £ Is
c ‘=compact.
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