## COMPACTOID SETS IN P-ADIC LOCALLY CONVEX SPACES

## C. Perez-Garcia

Facultad de Ciencias, Av. de los Castros, 39071 Santander
A.M.S. 1980 Classification: 46P05

Several properties of compactoid sets in Locally convex spaces E over non-archimedean valued fields K are proved in this paper. As a consequence we derive partial afirmative answers to the following questions:

- 1. Let A be a compactoid set in E. Does there exist a compact set X in E such that A is contained in the closed absolutely convex hull of X7 (GRUSON and VAN DER PUT [3], problem following 5.8).
- 2. Let A be a complete c'-compact set in E. Does it follows that A is the closed absolutely convex hull of some compact set X? (SCHIKHOF [6], problem following 1.7).
- 3. Is every weakly c'-compact set in E c'-compact? (SCHIKHOF [8], problem following 2.7).

A subset  $\lambda$  of E is compactoid [10] if for each neighbourhood U of O in E there exists a finite set F  $\subset$  E such that  $\lambda \subset U + C(F)$  (where C(F) denotes the absolutely convex hull of F);  $\lambda$  has absolutely convex set  $\lambda \subset$  E is C'-compact [7] if in the above we may choose  $F \subset \lambda$ .

First we give afirmative answers to problems 1 and 2 in this paper, for locally convex spaces with a *Schauder basis* (the concepts of Schauder an orthogonal basis we consider here are in [2]).

THEOREM 1 ([4], theorem 3.2) Let E be a locally convex space with a Schauder basis such that E is  $\sigma(E,E')$ -sequentally complete and E' is  $\sigma(E',E)$ - sequentally complete.

a) Assume that the basis on E is an orthogonal basis. Then, every compactoid subset of E is contained in the closed absolutely convex hull of a sequence  $(y_n)$  in E with  $\lim y_n = 0$ .

b) Assume that the valuation on K is dense. Then, every c'-compact and complete subset of E is the closed absolutely convex hull of a sequence  $(y_n)$  in E with  $\lim y_n = 0$ .

REMARKS 1. For an example showing that just "E has a Schauder basis" in part a) of theorem 1 it is not enough, see [6] note to theorem 2.1.

2. Observe that if |K| is discrete, then problem 1 in this paper has an afirmative answer for every locally convex space over K. It is a direct consequence of [6], theorem 1.5.

Now we study problem 3 in this paper for locally convex spaces with duals of countable type. For that, we denote by  $E'_{C}$  the dual space E' endowed with the locally convex topology defined by the family of non-archimedean seminorms  $(|\cdot|, \cdot|\cdot|_{A} : A \text{ is weakly $c'$-compact in $E$})$  given by  $|\cdot|f|\cdot|_{A} = \sup_{x\in A} |f(x)|$  (fee E', A weakly c'-compact). Then, in  $\lim_{x\in A} |f(x)|$  the same wein as theorem 8.3 of [5] we obtain,

THEOREM 2. Let E be an strongly polar space (see [5] for this concept). Then, the following properties are equivalent:

- i) E' is of countable type.
- ii) Every weakly c'-compact subset of E is weakly metrisable.
- iii) Every weakly c'-compact subset of E is metrizable and compactoid.

<u>Proof.</u> i) $\rightarrow$ ii) and iii) $\rightarrow$ i) follow from [9], theorem 5.1.

ii) $\rightarrow$ iii): similar to a) $\rightarrow$ b) in theorem 8.5 of [5].

COROLLARY. Let E be an strongly polar space. Then, if  $E_C'$  is of countable type, every weakly c'-compact set in E is c'-compact.

Furthermore,, if E is metrizable, then problem 3 in this paper has an afirmative answer for E if and only if  $E'_{c}$  is of countable type.

Also, as a consequence of proposition 3 of [1] we have an afirmative answer to our problem 3 in the following

## case:

THEOREM 3. Let E be a weakly quasicomplete space (e.g. a reflexive space) over an spherically complete valued field K. Then, every weakly c'-compact subset of E is c'-compact.

## REFERENCES.

- [1] DE GRANDE-DE KIMPE, N.- c-compactness in locally K-convex spaces, Proc. Kon. Ned. Akad. van Wetensch. A 33, 176-180 (1971).
- C2] On the structure of locally K-convex spaces with a Schauder basis, Proc. Kon. Ned. Akad. van Wetensch, a 75, 396-406 (1972).
- [3] GRUSON, L: VAN DER PUT, N.- Banach spaces, Bull. Soc. Math. France, Mémoire 39-40, 55-100 (1974).
- [4] PEREZ-GARCIA, C.- On compactoidity in non-archimedean locally convex spaces with a Schauder basis, Proc. Kon. Ned. Akad. van Wetensch (To appear).
- [5] SCHIKHOF, W.- Locally convex spaces over non-spherically complete valued fields I-II, To appear in Bull. Soc. Math. Belgique 1986.
- [6] \_\_\_\_\_\_ The closed convex hull of a compact set in non-archimedean locally convex spaces. Report 8646. Department of Mathematics. Catholic University. Nijmegen. The Netherlands (1986).
- [7] ————— A complementary variant of c-compactness in p-adic Functional Analysis, Report 8647. Department of Mathematics. Catholic University. Nijmegen. The Netherlands (1986).
- [8] Weak c'-compactness in p-adic Banach spaces, Report 8648. Department of Mathematics. Catholic University. Nijmegen. The Netherlands (1986).
- [10] VAN ROOIJ, A.C.M.- Non-archimedean Functional Analysis, Marcel Dekker, New York (1978).