EXTRACTA MATHEMATICAE 3, n.l1, 1-15 (1988)

ORTHOGONALITY IN NORMED LINEAR SPACES: A SURVEY
ParT I. MAIN PROPERTIES

Javier Alonso and Carlos Benitez
Departamento de Matemdticas
Universidad de Extremadura

06071-BADAJOZ . SPAIN

AMS Class.: 46B20, 46C05

Let Ebe a real linear space. An inner product in E is a mapping
(1) : ExE — R such that

(Ax+uylz)=a(xiz)+ulylz) ’ (xly)=(yix) ’ (xIx)>0 if x=0

for every A,uelR and x,yeE.
A norm in E is a mapping H # : E — R such that

Ix+yl=iixl+lyl » Bax =11 ixh , Ix#>0 if x»=0

for every XeR and x,yeE.

Every inner product induces a norm Il><l|=(x|x)1/z satisfying the

parallelogram law
Ix+y i Zenx-yhZ2=2Cnxn2e0y8%)  ,  (x,yeE)

Reciprocally every norm satisfying the parallelogram law is
induced by the inner product (221

(xly)=%(||x+y||z-|lx-yllz) s, (xyy€eE)

Therefore a real normed linear space is an inner product space
(its norm is induced by an inner product) if and only if so is every
two-dimensional linear subspace (briefly a plane) of it.

The plane generated by two linearly independent points x and y of
a real normed linear space E can be identified with the linear space RrR?
endowed with the norm N(X,p) I=lax+uyll. With this assumption we can say
that E is an inner product space if and only if every plane section of

its unit sphere S=(x€E : Ixli=1} is anellipse.



Let E be an inner product space (i.p.s.). Apoint xeE is said to
be orthogonal to other point yeE, x Ly s when (xly)=0.

Orthogonality relation is well equipped with interesting
properties. The way in which we describe below the more significative
of such properties is slightly reiterative but suitable for our later

study.

MAIN PROPERTIES OF ORTHOGONALITY IN INNER PRODUCT SPACES

Nondegeneracy: Ax_L ux if and only if either Ax=0 or ux=0,.
Simplification: If x Ly then Ax LAy, (AeR).

Continuity: If x‘h_Lyh for every nelN and if the sequences (xn) and (yn)

converge to x and y, respectively, then x L vy.
Homogeneity: If x_ Ly then Ax_L py, (A, ueR).
Symmetry: If x Ly then y_1 x.
Additivity: If x Ly and x_L z then x_| y+z.

Existence: For every oriented plane P, every xeP\{0} and every po>0,
there exists yeP such that the pair [x,y]l] is in the given

orientation, lyll=p and x_Lvy.
Uniqueness: The above y is unique.

Existence unique diagonals: For every x,yeEN(0} there existsa unique
>0 such that x+py L x-py. (i.e. among every parallelograms
with sides in given directions there are some with orthogonal
diagonals. Moreover such parallelogram is unique if we fix an
orientation on the plane generated by the sides and the norm

of one side.)

On the other hand there are many ways to word orthogonality of two
points without explicit mention to the inner product of the space.

Among them we pay attention to the following ones.



PROPOSITIONS EQUIVALENT TO THE FACT X1Y

(R) Hx+ayli=lix-ayll , (xeR)
(B) fixli=lix+xyll , (xelR)
(1) Nx+ylh=lix-yli

Py Mx-y 1 3=tx i Z+tyn?

TR T P S B Ee
(S) Either x=0, or y=0 , or unxu‘nyul T~ Ty
b 2
(C) zatllﬁiﬁriyll =0 , where o:_t,fii,r,L are real numbers such that
i=1

m 2 m 2 m
Laf=Ear=0 » Lafr=
1=1 =1 i=1
(D) sup{fix)g(y)-f(y)gi(x) : f,geS”}=lixliiyl , where S° denotes the unit

sphere of the dual space E”.

(A) Either x=0, or y=0, or they are linearly independent and such that
the four sectors defined by x and y in the unit ball of the
plane generated by them (identified to R®* are of the same

area.

Propositions (I) and (P) are particular cases of (C), as well as
other propositions considered by some autors in the same context

(orthogonality in normed linear spaces) of the present survey. For

example
rBe(0,1)  and Nx+y h 2+ Hox+ay %= ax+y I 3+ I x+py 12 (243
ol and  (1+6) x+yll 2=l x+oy H 2 +lhy+axh? (151
A#0 and Hx+ryli=Hx-Ayl {91 €31
A#0 and Hx-ayhZ=#xiZeaZiyn? {91 €31

As we have indicated above anyone of the mentioned propositions is
equivalent to the orthogonality of the points x and y. On the other
hand they are meaningful also in normed linear spaces. Both facts are
in the basis of every concept of orthogonality in normed linear

spaces which we shall consider henceforth.



ORTHOGONALITY IN NORMED LINEAR SPACES

Let E be a real normed linear space. Following the chronological
order of the respective concepts we shall say that a point xeE is
arthogonal toother point yeE in the Roberts sense [27,(1934)1, x Ry,
when they satisfy the proposition (R). Analogously for the senses:
Birkhoff [7,(1935)], Isosceles [18,(1947)], Pytagorean (18 ,(1947)1,
Singer (28,(1957)1, Carlsson (10,(1961)], Diminnie [14,(1983)] and
Area (2,(1984)1,

There are two primary and natural family of questions relative to
the several types of orthogonality in normed linear spaces:

First, what properties of orthogonality in inner product spaces
(symmetry, homogeneity,...) remain valid for this generalized conceps.

Second, what is the relation (equivalence, one implies other, ...)
between any two orthogonalities in a given normed linear space.

From the first family of questions there is only a little part
that is common to every orthogonalities under consideration, namely the
nondedgeneracy, simplification and continuity. All of them easy to
prove.

With regard to the other basic properties listed before the
results are very assorted and occasionally difficult to prove or
unknown. The part I of this survey is devoted to a description of many

known results on this topic.

MAIN PROPERTIES OF R-ORTHOGONALITY

Besides the already mentioned for every generalized orthogonality
{nondegeneracy, simplification, and continuity), it is obvious that

R-orthogonality is homogeneous and symmetric.

Only with a 1little intuition on the geometrical meaning of
R-orthogonality it is easy to achieve examples (e.g. in RY of spaces

in which R-orthogonality is non additive,

With regard to the existence R.C. James [18] gave an example of
space in which two points are R-orthogonal if and only if any of them
is zero. (R-orthogonality is trivially additive in such a space).

Furthermore James proved in the mentioned paper that



R-orthogonality is existing if and only if the norm is induced
by an inner product.

In other words the interest of this concept of orthogonality just
ends in this remarkable characteristic property of inner product
spaces, which was obtained as a corollary of the F.A. Ficken’s
theorem [161:

"E is an inner product space if and only if lx+ayli=lix-ayll, for

every a€lR and x,yeE".

For analogous reasons also the admission of diagonals for this

orthogonality is characteristic of inner product spaces.

Finally it is easy to prove the uniqueness and uniqueness of
diagonals, in case they exist. (A fortiori, the trivial additivity

in spaces of dimension two.)

MAIN PROPERTIES OF B-ORTHOGONALITY

It is obvious that B-orthogonality is homogeneous.

However it is, in general, neither symmetric nor additive.

G. Birkhoff (71, R.C. James [19,20] and M.M. Day [11] in gradual
stages proved that:

A real normed linear space of dimension = 3 is an inner
product space if and only if B-orthogonality is symmetric.

This outstanding result is closely related with some deep and
involved theorems of W. Blaschke [Bl, S. Kakutani (231, R. Phillips
[26] and others. Among several equivalent statements of such theorems
we single out the following ones:

"The unit sphere S of a norm in R? is an ellipsoid if and only if
the set of contact points with S of any cillinder circunscribed to S
contains a plane section of S." (23]

"A real normed linear space of dimension = 3 is an inner product
space if and only if there is a linear projection of norm 1| over each
plane." [231 (261

With regard to the two-dimensional case G. Birkhoff [ 7 1
indicated the way to construct examples of norms in iRz with symmetric

B-orthogonality but non induced by an inner product. R.C. James [19]



gave the examples

OxiPriy PP | if xy20 -
Hxsy) It = (P>0, q>0, —+-=1)
P a

x4y H79 if xy<0

and finally M.M. Day (11] proved that every possible example is, as the
above, a suitable combination, on even and odd quadrants, of an

arbitrary norm and its dual (a kind of “mixed norms" ).

Since B-orthogonality 1is, in general, non symmetric it is
necessary to distinguish between additivity to the right (the
mentioned one) and additivity to the left (x1 z, ylLz = x+y_ L z),
and also between existence and uniqueness to the right and to

the left, in the obvious corresponding sense.

The property of existence to the right of B-orthogonality
can be viewed as a simple consequence of the following more expressive
result (201:

For every xeE there exists a closed and homogeneous
hyperplane H such that x_{8H.

This proposition is nothing else than a well known corollary of
the Hahn-Banach theorem, taking into account that a point xeE is
B=orthogonal to other point yeE if and only if there exists
a continuous linear functional feE’\{0)> such that f(x)sifillixl,
f(y)=O . [20]

It is worthwile to mention in this context the statement in terms
of B-orthogonality of a deep theorem of R.C. James (211 which says:

"Let E be a Banach space. E is reflexive if and only if for every
closed and homogeneous hyperplane H there exists a point x€eE\{(0} such
that x BH ".

From another viewpoint it is also proved in [20] that x_Box+y ,
(x»0), if and only if

Lim A7 N Ux+ayli=lx i) = —alixl = 1im X7 x4y h=lx i)
A+-0 A++0
from which it follows that the numbers oa=al(x,y), for xeS, are the

points of a compact interval with the opposite of each derivatives of

the norm as ends.

The existence to the left of B-orthogonality follows from
the homogeneity of this orthogonality and the convexity of the function
relR — lIIax+yll 4 [20].



Therefore it is also true that oax+y Bx , fBx+y Bx and acr¢3
imply »x+y Bx .

However the existence, for every xeE, of a closed and
homogeneocus hyperplane H such that HIBx is a characteristic
property of inner product spaces of dimension=3, [19]. Infact

it is equivalent to the Blaschke-Kakutani theorem.

Having into account the above results it is no difficult to prove

the equivalence between the following propositions [20]:

i) B-orthogonality is additive to the right.

ii) B-orthogonality is unique to the right.

iii) For every x»0, the closed and homogeneous hyperplane H
such that x IBH is unique.

iv) E is smooth. (i.e. the norm is Gateaux-differentiable in every
point different of zero, or, in other words, there are no

"corners” in the plane sections of the unit sphere.)

Analogously the following propositions are equivalent (201]:
i) B-rorthogonality is unique to the left.

ii) For every xeS and every closed and homogeneous hyperplane
H such that x_BH, the hyperplane x+H only touchs S in
the point x.

iii) E is rotund. (i.e. the norm is strictly convex, or, in other

words, there is no segments in the unit sphere.)

For additivity to the left we have that (201:

If dimE=2, then B-orthogonality is additive to the left
if and only if it is unique to the left (E is rotund).

If dimE=3, then B-orthogonality is additive to the left
if and only if it is symmetric (E is an inner product space).

Finally B-orthogonality admits unique diagonals, being the
corresponding & such that 37'lixll =&llyl =3lixl. Furthermore E is
an inner product space if and only if Ixl=8lyll for every
X, YEEN{O>. (6]



MAIN PROPERTIES OF I-ORTHOGONALITY

It is obvious that I-orthogonality is symmetric.

On the other hand I-orthogonality is either homogeneous or
additive if and only if the norm is induced by an inner
product. (18]

Such proposition follows from the Fiken’s characterization of
inner product spaces already mentioned with regard to the existence of

R-orthogonality.

Elementary convexity arguments prove the existence of
I-orthogonality.

Since I-orthogonality is non homogeneous we cannot say in this
case, as for B-orthogonality, that the existence property, just as we
have state it, is equivalent to the weaker James’s result [18] that for
every x,yeE there exists a number o such that x_ll ax+y. However, also as
for B-orthogonality, if x#0 then the set (a: xdlox+y} is a non empty

compact interval.

Then for non homogeneous orthogonalities we must distinguish
between uniqueness (in the initial sense of this paper), a-uniqueness
(the above interval is reduced to a point) and S-uniqueness (for
every oriented plane P and every xeSNP there exists a unique yeSNP such
that the pair [x,y] is in the given orientation and x L y).

The known results about this are the following:

I-orthogonality is either unique or a-unique [24] if and
only if E is rotund.

I-orthogonality is S-unique [2].

Finally it is obvious that I-orthogonality admits unique

diagonals.

MAIN PROPERTIES OF P-ORTHOGONALITY

It is obvious that P-orthogonality is symmetric.

It is either homogeneous or additive if and only if the
norm is induced by an inner product (18].
In fact it is no difficult ¢to see that additivity implies

homogeneity and that this implies the fulfilment of parallelogram law.



As for I-orthogonality elementary convexity arguments prove the

existence of P-orthogonality (18].

With regard to unigueness we shall distinguish between the already
mentioned three types or degrees for such property:

P-orthogonality is unique if and only if E is rotund.

P-orthogonality is a-unique (241,

We do not know a characteristic property for S-uniqueness.
Obviously rotundity of E is a sufficient condition for it, but if E is
the space R? with a regular octogon as unit sphere then P-orthogonality
is S-unique, whereas P-orthogonality is non S-unique when S is an

square.

P-orthogonality admits unique diagonals and, in ananalogous
way to that of B-orthogonality, we have that the number & of this
property satisfies 272 xi =Syl =(2V2-1)_1I|xll. Furthermore E
is an inner product space if and only if lxl=8lyll for every

x, YEEN{O> . (51

MAIN PROPERTIES OF S—-ORTHOGONALITY

S-orthogonality can be viewed as a normalized I-orthogonality.
Then we have that

S-orthogonality is homogeneous, symmetric, existing, unique
(I-orthogonality is S-unique) and with existing unique diagonals.

As a consequence of the above, S—orthogonality is additive on
two-dimensional spaces.

We do not know when S-orthogonality is additive in spaces of
dimension = 3, but we conjecture that if dim E =3 and if

S—-orthogonality is additive then E is an inner product space.

MAIN PROPERTIES OF C-ORTHOGONALITY

C-orthogonality is symmetric in some cases (lsosceles,
Pythagorean, ...) and it is non symmetric in other cases (e.g.
x Iy when lix+2yli=lx-2yll).

We conjecture that either C-orthogonality is trivially
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symmetric (as in Isosceles, Pythagorean, ...) or such property is
characteristic of inner product spaces (as in the above mentioned
example).
C-orthogonality is either homogeneous or additive to the
left (totheright) if andonlyif E is aninner pruduct space (101.
The very involved proof given in [10] of this proposition is based
on the fact that either homogeneity or additivity to the left imply the

following characteristic property of inner product spaces
n

2—
T a_‘HB,lnx+yiyll =0

i=g

Ly = lig

(with II(?_txn?,Lnyll in place of llfi_‘nxﬂ«iyll for additivity to the right).

It is easy to see that C—orthogonality is existing (in any
sense) to the right and to the left [101(2].

With regard to uniqueness (in any sense) we only know partial
answers as the already mentioned for I and P-orthogonalities and the
fact, easy to prove, that C-orthogonality is non-unique (general
sense) when the space is non rotund.

Moreover we conjecture that rotundity of the space is not
only necessary but a sufficient condition for uniqueness
(general sense) of C-orthogonality.

Finally C-orthogonality admits diagonals ([13] but we do not

know if, in general, they are unique.

MAIN PROPERTIES OF D-ORTHOGONALITY

There is no doubt that D=-orthogonality is homogeneous and
symmetric.

It also satisfies the properties of existence [15] and
existence of diagonals.

Both properties follow from the analogous properties of
B-orthogonality through elementary continuity arguments and the fact
that [15]:

"If x1By then sup (fix)gly)-fly)gix) : f,geS” > = jixlliyl"

It is proved in [28] that B and D-orthogonality are equivalent

when D-orthogonality is either additive or unique and, as a consequence
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of it, that in spaces of dimension = 3 the following propo-
sitions are equivalent:

D-orthogonality is additive.

D-orthogonality is unique.

B-orthogonality is symmetric (E is an inner product space and

hence B and D-orthogonalities are equivalent).

But also it is true in spaces of dimension 2 that B-orthogonality
and D-orthogonality are equivalent if and only if B-orthogonality is
simmetric. This fact follows easily from the nature of the Day’s "mixed
norms” [11], already mentioned in this paper with regard to symmetry of
B-orthogonality.

Therefore in spaces of dimension 2 D-orthogonality is uni-
que if and only if the space is endowed with a rotund and
smooth ‘““mixed norm".

Moreover since it is homogeneous D-orthogonality is additive in

spaces of dimension 2 if and only if it is unique.
Finally a simple analysis of the convex function
peR+ — p ix+pylillx-pyl

shows that diagonals are unique for D-orthogonality if and only
if B and D-orthogonality are equivalent, i.e. "mixed norms" in

the 2-dimensional case and i.p.s. for dimension = 3,

MAIN PROPERTIES OF A-ORTHOGONALITY

Firstly we describe a suitable analytical setting for
A-or thogonality.

Let S be the unit sphere of a plane (identified to R%* of E and
let s(A\) be the point of S that is to a given point s(0)eS at an angle
A measured with a given orientation.

Then the mapping s: [0,2r] — S is a parametrization of the
curve S, continuous and of bounded variation, which serves to say that
a point x=Hxlls(ax) is A-orthogonal to other point y=lylls(s3) ,

linearly independent with it, if and only if
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IE] a+m

J s (A)ds_(A)-s_(N)ds (k)=I s (AN)ds_(A)-s (N)ds (A)
1 2 2 1 1 2 2 1

a 3

(obviously there is no essential restriction in supposing O=a¢/3=n)

It follows from the above analytical setting (also from the
ingenuous geometrical thought) that A-orthogonality is homogeneous,
symmetric, existing, unique and with existing unique diago-

nals.

As in the case of S-orthogonality it follows from the homogeneity
and uniqueness that A-orthogonality is additive in spaces of

dimension 2.

Also as for S-orthogonality we conjecture that additivity of
A-orthogonality is a characteristic property of inner product

spaces of dimension = 3.
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