SMOOTH TORAL ACTIONS ON PRINCIPAL BUNDLES AND CHARACTERISTIC CLASSES

NIEVES ALAMO AND FRANCISCO GOMEZ

Departamento de Algebra, Geometría y Topología. Facultad de Ciencias. Universidad de Málaga. Campus Teatinos. Apartado 59. Málaga 29080.

1980 AMS Subject Classification: 57R20

This is an extract of a preprint which will be published elsewhere.

The purpose of our work is to find explicit formulae for the computation of some characteristic classes of smooth principal bundles $\mathcal{P}\colon P\to B$, in terms of local invariants at a "singular subset" A_G of B, associated to a smooth action of a compact Lie group G on \mathcal{P} . This singular subset, A_G , is defined as the set of points x in B whose isotropy subgroups G_x have dimension at least one.

The starting point for our research is the following result:

Let $\alpha \in H^{2p}(B;k)$ be a characteristic class of \mathcal{P} with 2p > n-r ($n = \dim B$, $r = \dim G$), where H^* denotes singular cohomology and k is any field of characteristic zero. There exists then $\beta \in H^{2p}(B, B-A_G; k)$ such that $j^*(\beta) = \alpha$, where j^* is the homomorphism induced in cohomology by the inclusion $j: B \to (B, B-A_G)$. In particular, if the action of G on G is almost free, G must be zero. (See [6] and [9] for the particular case of vector bundles)

If B is compact and oriented, we can see more explicitly the dependence of the characteristic classes on the singular set A_G , because in this case we have a commutative diagram

$$H^{2p}(B, B - A_G) \xrightarrow{j^*} H^{2p}(B)$$

$$\gamma \uparrow \cong \qquad \cong \uparrow \text{ Poincar\'e duality}$$

$$H_{n-2p}(A_G) \xrightarrow{} H_{n-2p}(B)$$

(see lemma 14, section 10, chapter 6 of [10], for the definition of γ), and then, if 2p > n-r, the Poincaré dual of α can be represented by a cycle z of A_G . The general problem is to find an explicit formula giving such a z. This kind of residue formula should involve only the restriction of $\mathcal P$ to A_G , the action of G on this restriction, the embedding of A_G in B ("normal bundle" of A_G in B), and the action of G in this "normal bundle".

We shall restrict ourselves to study the case of G being a torus. This restriction includes the equivalent formulation, for compact manifolds, of infinitesimal isometries. We further assume that the action of G on B has finite orbit type (i.e. the action has only a finite number of isotropy subgroups). This is the case, for instance,

when B is compact (see [8]).

We have: $A_G = \bigcup \ F \quad \text{, where } \mathcal{F} \text{ is the family of connected components}$

of the fixed point sets under the action of all subtori H of G, with dim $H \ge 1$, appearing as 1-component of isotropy subgroups under the action of G on B.

We need to assume a hypothesis concerning the "genericity" of the action:

Definition 1. The action of G on B is called *generic* if for each connected component of A_G , there exist r subtori of G of dimension one, $S_1,...,S_r$, such that they generate G, i.e. $S_1...S_r = G$, and any subtorus of dimension one appearing as 1-component of isotropy subgroup on that connected component, is one of the S_i (cf. 2.10 pag 42 of [1]).

In particular, the genericity assumption implies that, each element of \mathcal{F} which is fixed by a subtorus of dimension s, is contained in exactly s elements of \mathcal{F} which are fixed only by subtori of dimension 1.

To construct characteristic classes, we use the Chern-Weil homomorphism of ${\cal P}$,

$$w_p : Sym(\underline{K})_I \to H_{dR}^*(B)$$

(see for instance [7]), where Sym (\underline{K})₁ is the graded algebra of multilinear symmetric functions in the Lie algebra \underline{K} of the structure group K of $\mathcal P$, invariant under the adjoint representation of K in its Lie algebra \underline{K} .

The residue classes.

Let $F \in \mathcal{F}$ be a connected component of the fixed point set by a subtorus of dimension s, and let $F_1,...,F_s$ be the elements of \mathcal{F} containing F, and fixed only by subtori of dimension 1, $S_1,...,S_s$, respectively.

Choose $h_i \neq 0$ in the Lie algebra \underline{S}_i of S_i , i = 1,...,s. Give η_{F_i} (normal bundle of F_i in B) the orientation induced by the complex structure associated to h_i , and give $\eta_F = \eta_{F_i \mid F} \oplus ... \oplus \eta_{F_s \mid F}$ the direct sum orientation. (See [6]).

Then, if $\Gamma \in \text{Sym}(\underline{K})_1$, and 2m = codim F, we consider the following "Laurent polynomial" in the indeterminates $X_1,...,X_s$:

$$(-2\pi)^{m} (-1)^{s+1} \frac{w (\mathbf{P}|_{F}, \sum_{i=1}^{s} X_{i}h_{i}, \Gamma)}{\prod_{i=1}^{s} w (\eta_{F_{i}|_{F}}, X_{i}h_{i}, Pf_{F_{i}})}$$

where $w\left(\xi,\,h,\,.\right)$ denotes the "generalized" Chern-Weil homomorphism (see [2], or

[6] where the definition differs from the one in this paper by a certain constant factor).

Definition 2. We define the residue class $\alpha_{\Gamma}(F) \in H_{dR}^{2p-2m}(F)$ as the coefficient of the term of degree 0 of the above "Laurent polynomial".

Now, we can state the residue formula as follows:

Theorem. Let $\mathcal{P}: P \to B$ be a smooth principal bundle with structural group K, and assume that a torus G acts smoothly on \mathcal{P} . Suppose that the action of G on B has a finite number of orbit type and it is generic. Then, if $2p > \dim B - \dim G$,

$$w_{p}(\Gamma) = \sum_{F \in \mathcal{F}} \int_{-1}^{-1} \alpha_{\Gamma}(F)$$
,

for $\Gamma \in \operatorname{Sym}^p(\underline{K})_I$, and where \int_I^{-1} denotes the inverse of the fiber integral f associate to any tubular neighbourhood U of f in f oriented as above, followed by the canonical homomorphism $H_{fc}^*(U) \to H^*(B)$.

For the proof, see [2].

Residue formulae for characteristic classes in some particular cases have been found by other authors. See for instance [3], [6], [9] in the real case, [4] in the complex case, and [5] for $\mathbb{Z}/(2)$ coefficients.

REFERENCES

- [1] N. Alamo: Acciones de toros sobre fibrados principales y una fórmula de residuos para algunas clases características. Thesis. University of Málaga, (1987).
- [2] N. ALAMO and F. GOMEZ: Smooth toral actions on principal bundles and characteristic classes. Preprint. Forshungsinstitut für Mathematik. Zürich, (1987).
- [3] P. BAUM and J. CHEEGER: Infinitesimal isometries and Pontrjagin numbers. Topology 8 (1969), 173-193.
- [4] R. BOTT: Vector fields and characteristic numbers. Michigan Math J. 14 (2), (1967).
- [5] J. DACCACH and A. WASSERMAN: Stiefel-Whitney classes and toral actions. Topology and its aplications 21 (1985), 19-26.
- [6] F. GOMEZ: A residue formula for characteristic classes. *Topology* 21 (1), (1982), 101-124.
- [7] W. GREUB, S. HALPERIN and R. VANSTONE: Connections, Curvature and Cohomology, Vol. II. Academic Press (1972).
- [8] S. Halperin: Real cohomology and smooth transformations groups. Ph.D. Thesis. University of Cornell, (1970).
- [9] J.S. PASTERNACK: Folations and compact Lie group actions. Comm. Math. Helv. 46 (1971), 467-477.
- [10] E. H. SPANIER: Algebraic Topology, McGraw-Hill, New York (1966).