EXTRACTA WATHEMATICAE 1, n.3, 103-114 (1986)

OPERATORS ON SPACES OF VECTOR-VALUED
CONTINUOUS FUNCTIONS

Fernando Bombal
Facultad de Matemiticas
Universidad Complutense

28040 Madrid. Spain

The modern theory of linear bounded operators on spaces of
continuous functions is greatly indebted to the work of A. Gro
thendieck, who in his fundamental paper |18| characterized seve
ral classes of operators on C(K) and, with his peculiar homolo
gical point of view, axiomatized several important properties
of a Banach space in terms of the behaviour of the operators de
fined on it.

The following is an exposition of several results concer-
ning to the study of some classes of operators on spaces of Ba
nach valued continuous functions on compact Hausdorff spaces,
following Grothendieck's directions.

Our terminology will be standard. But in order to prevent
any doubt, let us fix some notation. Throughout the paper, E
and F will be Banach spaces and K a compact Hausdorff space.
C(K,E) will denote the Banach space of all continuous E-valued
functions on K, under the supremum norm. When E is the scalar
field, we shall write simply C(K).o{(E,F) will stand for the
space of all the operators (=linear bounded operators) between
E and F. Recall that T € of(E,F) is said to be

-weakly compact if T maps bounded sets inté relatively
weakly compact sets.

-Dunford-Pettis if T sends weakly convergent sequences in-
to weakly convergent ones. -

-a Dieudonné operator if T transforms weakly Cauchy séqdeg
ces into weakly convergent ones. '

-unconditionally converging if T maps weakly unconditiona-
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11y Cauchy (w.u.c.) series into norm unconditionally con-
vergent series.

It is easily seen that every weakly compact or Dunford-
Pettis operator is a Dieudonné operator, and that every Dieudon
né operator is unconditionally converging. No other non-trivial
relations are true in general. Also, all these classes of opera
tors are operator ideals, that is, they are stable under compo-
sition with arbitrary operators- and, for a given pair or Banach
spaces E and F, they are subspaces of of(E,F).

For a finitely additive measure m on some ¢ -algebra f,
with values in of(E,F), let us denote by fi its semi-variation,
i.e., the set function on L defined by

f(A)=sup {IIZm(a )%, I}
1

where the sup is taken over all the finite partitions of A in
J and lIin|£1 (see 15|, p. 51). Recall that f is said to be
continuous at ¢ 1if ﬁl(An) > 0 for every decreasing sequence
(An) l® in Jor, equivalently, if there exists a control measu-
re for m, that is, a positive countably additive measure U on

I such that 1im fi(A)=0
v(a)40

1. Some classes of operators on C(K,E).

Given an operator T from C(K,E) into F, as a consequence
of the Riesz. representation theorem, there exists a finitely
additive representating measure m of bounded semi-variation, de
fined on the Borel G-field Bo(K) of K and with values 1in
a((E,F**), in such a way that

(*) T(f)= ff dm for each f €C(K,E)

(see, for instance, |14]|, p. 182). In particular, the dual spa-
ce C(K,E)* is isometric to the space rcabv(Bo(K),E*) of all re-
gular, countably additive E*-valued measures on Bo(K) of boun-
ded variation, endowed with the variation norm. ‘

The study of the relationship between an operator and its
representating measure is one of the central topics in the theo
ry. Let us remark that the expresion (*) makes sense for f be-
longing to the space B(Bo(K),E) of totally measurable E-valued
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functions on Bo(K) (|15}, p. 83), i.e., the uniform limits of
Bo(K)-simple E-valued functions, and so it defines an extension
T of T, which is simply the restriction to B(Bo(K,E) of the bi-
transpose T** of T. It is easily seen (see |1]) that T is wea-
kly compact if and only if so is T. In general, if ¥ denotes
either the class of weakly compact, Dunford-Pettis, Dieudonné
or unconditionally converging operators, we have:

Theorem 1.1. (|4]|) An operator T from C(K,E) into F belongs to
the class € if and only if so is 7.

Note that for a non void Borel set A cK, the mapping
E3x —) QA(x)=}kx

is an isometric embedding of E into B(Bo(K),E), and for every
operator T:C(k,E) — F with representing measure m, the map
T GA is precisely m(A). Thus, if T belongs to ¥, the same hap-
pens with m(A). Moreover, we have the following result (see |1],
181,1161,125]):

Proposition 1.2. Let T:C(K,E) — F belong to ¥ and let m be
its representing measure. then

a) m is continuous at @.
b) For each A €Bo(K), m(A) maps E into F and belongs to ?.

However, conditions (a) and (b) do no characterize the ope
rators between C(K,E) and F which belong to ¥, as the follo-
wing example shows:

Example 1.3. There exists a non unconditionally converging ope-
rator T from C([0,1],co) into c
verifies that M is continuous at @ and for every Borel set in

whose representing measure m

[0,1], m(A) is a compact operator from o into itself. In fact,
let N\ be the Lebesgue measure on [0,1], and (rn) a bounded se-
quence in C([O,1])‘which is also an orthonormal system in L2(X).
Then (rn) converges weakly to 0 in L2(k) and therefore, also in
t'(N). For f eC([O,1],co) let us define

T(E)=( [¢E(t),exyr (£)ANENL

where (e:) are the functionals associated to the canonical ba-
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o Since (rn) converges weakly to O in L1(X), T(f)
belongs to c/ and it is easily seen that T is linear and. boun-
ded. The representing measure of T is given by

ses (en) of ¢

m(A)(x)=«x,e;> [Arn(t)d/\(‘c))n‘:.I ’

for A€ Bo(A) and x €c,. In consequence, Im(A) |l ¢ N(A) - which pro
ves that Ml is continuous at @. Futhermore, m(A) is the limit in
‘the norm operator topology of the sequence of finite rank opera
tors (mk), where '

mk(A)(x)=( (x,e?) fAr1d s e (x,e;) IArkd ,0,0,...)

and so m(A) is a compact operator. However, T is not unconditio
nally converging, because zrnen is a w.u.c. series in C([0;1],
c,) but for every né€N HT%rhen)H=1. s :

In view of the preceding example, it is natural to ask when
the conditions (a) and (b) of proposition 1.2 characterize the
operators between C(K,E) and F belonging to the class ¥ . The
rest of this section is devoted to give some answers to this

question. -
L]

For reasons of brevity, we shall introduce the following
notation: given a compact Hausdorff space K, we shall say that
a Banach space E verifies condition (W)K (resp., (DP)K, {V)K,
(D)) if the following holds: -

For any Banach space F, an operator T from C(K,E) into
F is weakly compact (resp., Dunford-Pettis, uncoditionally
converging, Dieudonné) if and only if its representing mea
sure m satisfies:

a) m is continuous at 9.

b) For each Borel set ACK, m(A) maps E into F and is
weakly compact (resp., Dunford-Pettis, unconditiona-
111y converging, Dieudonné).

We shall omit the subindex K if E verifies the corresponding
condition for all compact Hausdorff spaces K.
Theorem 1.4. (|23]) Let E be a Banach space. Then

1) E verifies (W) if and only if E* and E** have the Ra
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don-Nikodym property.
2) E verifies (DP) if and only if E is a Schur space.
3) E verifies (U) if and only if E contains no isomorphic
copy of Cor . ’

We should mehtion that_tne,sufficiency of the above condi-
tions was well known (see, f.1i., [8] for (1) and (3), |16]| for
(2), etc,). Also C. Fierro had proved (1) in her Thesis.

For the property (D) we only know partial results:

Theorem 1.5. (|5]|) Let E be a Banach space.

1) If E* has the Radoﬁ—Nikodym property, then E verifies

‘ (D) if and only if E** has the Radon-Nikodym property.

2) If E is weakly sequentially complete, then it verifies
(D). ’

3) If E verifies (D), then it contains no . isomorphic copy
of Co-

4) If E verifies (D) and E¥* fails to have the Radon-Niko

dym property, then E contains an isomorphic copy of 11.

Neither condition (2) is necessary nor conditions (3) and
(4) are sufficient in order that a Banach space verifies (D).
In fact, the James space J (see f.i. |27]| p. 80) provides an
example of a non weakly-sequentially complete Banach space that
verifies (D) (J* and J** being separable, they have the Radon-
Nikodym property, and (1) applies). The James tree space X (see
f£.i. |27 p. T19) contains neither ¢, mor l1 and, sincé X* does
not -have the Radon-Nikodym property, it follows from (4) above
that X does not verify (D). Finally, X 911 provides a counter
example to the sufficiency of (4).. '

Theorem 1.5 relies heavilyson:ssome recent results about
the structure of C(K,E) that we:sha&l~refenirauer.

Another way of gg%ting some_answers to our, question is to
S R B I

focus the attention on the compact space K. In this direction
we have the following results: ‘

Theorem 1;6. (141) I1If K-is a compact Hausdorffrdispersed ‘space
(i.e., K does not contain any perfect set), every Banach space

verifies (W) (DP)K’~(U)K and (D)K.

K’

The interesting thing is that theorem 1.6 characterizes in
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fact the compact dispersed spaces, as the following result shows.

Theorem 1.7. (|4]) For a compact Hausdorff space K, the follo-
wing assertions are equivalent:

1) K is dispersed.

2) Every Banach space verifies (W)K’ (DP)K, (U)K and (D)K’

3) There exists a Banach space which contains a copy of o
and verifies either (w)K or (DP)K or (U)K or (D)K‘

The proof of the only non trivial implication (3) =>» (1)
is simply a reproduction of example 1.3 in an abstract setting.
In fact, if K is not dispersed, there is a purely non atomic Ra
don probability sets of (|28|), theorem 2.8.10). Now we can
construct a system of Borel sets of K,[A? :1¢ig2™ , nyol

+1.

n+1 L)Agi ; {A? : 181 ¢2"} is a partition

2i-1
of K for each n, and X(A?)=2"n for 1¢1i¢2" and n) 0. Let (x,)

be a sequence in E equivalent to the canonical basis in o and

choose x;gE* so that (xn,x;) =1=|x;| for every n 20. Let us

such that A?:K, A?:A

write r = i (-1)* XA" and define
nTi i

L)

neo + FOT £ €C(K,E) .

T(E)=( [, CE(E), x*) v (£)dA(E))
arguing as in example 1.3, we can prove that T is an operator
from C(K,E) into Coo whose representing measure m has X as a
control measure and such that m(A) is a compact operator for
every Borel set A. However, T is not even unconditionally con-
verging. In fact, Erhxn is‘easily seen to be a w.u.c. series
in B(Bo(K),E) but if T is the extension of T to B(Bo(K),E), then
HT(rnxn)H=1 for every n3% 0, which proves that T is no uncondi-
tionally converging. From theorem 1.1 we conclude that T itself
is not unconditiorally converging.

Theorem 1.8. (|4|) For a compact Hausdorff space K, the follo-
wing assertions are equivalent:

1) K is dispersed.

2) There exists a Banach space verifying (w)K, whose dual
lacks the Radon-Nikodym property.

3) There exists a Banach space verifying (W)K, whose bidual
lacks the Radon-Nikodym property.
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4) There exists a Banach space verifying (DP)K, which fails
to have the Schur property.

2. Some properties of the Banach space C(K,E).

As we said at the beginning of this paper, several impor-
tant properties of a Banach space are defined in terms of the
behaviour of the operatofs on it, following the directions of
the pioneering work of Grothendieck. Let us recall some of them:
A Banach space E is said to have

- the Dunford-Pettis property (DPP is short) if every wea-
kly compact operator on e is Dunford-Pettis.

- the Dieudonné property (DP in short) if every Dieudonné
operator on E is weakly compact.

- Pelczynski's property V (VP in short) if every uncondi-
tionally converging operator on E is weakly compact.

- Grothendieck's property (GP in short) if every operator
from E into o (or any separable Banach space) is weakly
compact.

The DPP, DP and GP were introduced by Grothendieck, who
proved also that every C(K) space has the two first properties -
and, when K is extremally disconnected, the GP too. Pelczynski
defined the VP in |22| and proved that C(K) spaces have it. The
obvious question is to ask what happens with the space C(K,E),
when E is a Banach space. We shall try to give some answers to
this question in the rest of the section.

All the above defined properties are inherited by finite
products and complemented subspace. Since E is a complemented
subspace of C(K,E), a necessary condition in order that C(K,E)
has any of the mentioned properties is that E verifies it. But
is it a sufficient condition? For the GP property the answer
is negative, except for trivial cases, and can be obtained as
a consequence of the following surprising result:

Theorem 2.1. ([10]) If K is an infinite compact Hausdorff space
and E is an infinite dimensional Banach space, then C(K,E) con-
tains a complemented copy of Cor

The idea of the proof is very simple. In fact, using the
Josefson-Nissenzweign theorem (see f.i. |13]|), we, can produce a
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pair of sequences (xn)( E and (x;)( E* , such that (x;) is weak*
convergent to 0 and Hxnu=1= <xn,x;) for every n 0. On the other
hand, since K is infinite, there exists an infinite sequence of
non void pairwise disjoint open sets (Gn). Choose tne Gn and
¢n€ C(K) so that O,g¢n(1 , ¢n(tn)=1 and ¢n vanishes outside
Gn. It is then obvious that the subspace

ov

Y=l£and>nxn:a=(an) (cof
.

is isometric to Cor and the mapping given by
ot
- *
P(f)_é:(f(tn),xn)cbnxn , f€C(KE)

is a continuous projection from C(K,E) onto Y.

Since no Grothendieck space can contain a non reflexive se
parable infinite dimensional complemented subspace, from theo-
rem 2.1 we can conclude:

Corollary 2.2. (|21]|) If C(K,E) is a Grothendieck space, then
either K is finite or E is finite dimensional.

For the other properties, the situation is completely di-
fferent. For example, an inmediate consequence of theorem 1.6
is the following

Theorem 2.3. (|9]) Let K be a dispersed compact Hausdorff space
and E a Banach épace. then C(K,E) has the DPP (resp., DP, VP)
if and only if so does E.

However, for a general compact space, only partial answers
are known:

Theorem 2.4. (|19]|) If E does not contain a copy of 11, then
C(K,E) has the DP for every compact Hausdorff space K.

Theorem 2.5. ((11]|) If E does not contain a copy of 11 and has
property (u) (i.e., for every weakly Cauchy sequence (xn), the-

re exists a w.u.c. series Zyn , such that {xn- ELyi} convenges
i=1"

weakly to 0), then C(K,E) has the VP for every compact Haus-
dorff space K.

The proofs of both theorems 2.4 and 2.5 use a continuous
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selection theorem for a multivalued function with values in
a convenient subset of Em. Theorem 2.4 had been conjectured in
|3], where was proved that C(K,E) has the DP under the stronger

assuption of E* havihg the Radon-Nikodym property.

As for the DPP, the first positive result is due to I. Do-
brakov, who proved in |16| that for a Schur space E and any
compact Hausdorff space K, C(K,E) has de DPP. The same result
holds when E is an (AM) Banach lattice (|24]). Much more diffi-
cult is the fact, proved by J. Bourgain, that C(K,L1(/0) has
the DPP (see, f.i., |7]). In spite of all this positive results,
the general answer is negative, In fact, in |26| M. Talagrand
built a Banach space H such that

i) H and H* have unconditional basis.
ii) H* is a Schur space. In particular, H and H¥* have the
DPP.
iii) c([0,1]),H) does not have the DPP.

Of course, theorem 2.3 tells us that C(K,H) has the DPP
for every dispersed compact space K. If K is a non dispersed
compact space, it is known (|28]), theorem 2.4.2) that there
exists a continuous function ¢ from K onto [0,1]. In consequen-
ce, the map f —y fg embeds isometrically c((0,1),H) as a closed
subspace of C(K,E). Since C([O,1],H) does not have the DPP, the
re exists a Banach space F and a wakly compact opefator T from
C([0,1],h) into F which is not Dunford Pettis. If we should be
able to extend T to a weakly compact operator T from C(k,E) to
F, then, as T would not be Dunford-Pettis clearly, we could con
clude that C(K,H) does not have the DPP. It turns out that this
extension can in fact be made. More generally, we can consider
the following situation: Let K and S be compact Hausdorff spa-
ces and @ a continuous function from K onto S. Hence, for every
Banach space E, the mapping

C(S,E)3f —rJe(f)=f9 € C(K,E)

is an isometric embedding. Then the following result holds.

Theorem 2.6. (|6|) Let E,F be Banach spaces and K,S and @ as
before. If T is an operator from C(S,E) into F with a represen-
ting measure m such that its semi-variation has a control measu
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re \,then there exists an operator T from C(K,E) into F so that
IT=lTI, T-i,=T and the semi-variation of the representing mea-
sure of T has a control measure k satisfying 98}): \. Moreover,
if T is weakly compact, so is T.

This last result was proved in |2| under the assumption of
E* having the. Radon-Nikodym property. Since Talagrand's space H
verifies this assumption, the argument sketched before theorem
2.6 can be applied to obtain the following:

Theorem 2.7. (|2]) Let K be a compact Hausdorff space. The fo-
llowing properties are equivalent:

1) K is dispersed.
2) If E is a Banach space with the DPP, so is C(K,E).
3) C(K,H) has the DPP.

Theorem 2.6 can be used to extend several other calsses of
operators from C(S,E) to the whole of C(K,E). For details, we
refer to |6].

In view of Talagrand's example, it seems difficult to find
large classes of Banach spaces E for which C(K,E) has the DPP
for an arbitrary compact Hausdorff space K. In this direction,
C. Nuflez has proved in |20| that H** does not have the DPP,
and he has conjecture that if the bidual E** of a Banach space
E has the DPP, then C(K,E) also has the DPP for every compact
Hausdorff space K.

REFERENCES

|11 J. Batt and J. Berg, Linear bounded transformations on the
space of continuous functions, Journ. Funct. Analysis, 4
(1964), 215-239.

|2] F. Bombal, Weakly compact operators on spaces of continuous
vector valued functions, Proc. of the A.M.S., 97 (1986),
93-96.

|3] F. Bombal and P. Cembranos, The Dieudonné property on C(K,E),
Trans. of the A.M.S., 285 (1984), 649-656.

|4] F. Bombal and P. Cembranos, Characterization of some cla-
sses of operators on spaces of vector valued continuous
functions, Math. Proc. Cambr. Phil. Soc., 97 (1985), 137-
146.



113

|5] F. Bombal and P. Cembranos, Dieudonné operators on C(K,E),
to appear in Bull. Acad. Pol. Sci.

|6] F. Bombal and B. Rodriguez-Salinas, Some classes of opera-
tors on C(K,E). Extension and applications, Archiv der
Math. 47 (1986), 55-65.

|7! J. Bourgain, New classes ofofp spacés, Lect. Notes in Math.
no. 889, Springer, Berlin, 1981.

|8] J. Brooks and P. Lewis, Linear operators and vector measu-
res, Trans. of the A.M.S., 192 (1974), 139-162.

|91 P. Cembranos, On Banach spaces of vector valued continuous
functions, Bull. Austr. Math. Soc., (1983), 175-186.

|10| P. Cembranos, C(K,E) contains a complemented copy of c
Proc. of the A.M.S., 91 (1984) 556-558. '

|11] P. Cembranos, N. Kalton, E. Saab and P. Saab, Pelzynski's
property V on C(§,E) spaces, Math. Ann., 271 (1985), 91-97.

[12] J. Diestel, A survey of results related to the Dunford-

o!

Pettis property, Proceedings of the Conference ‘on Integra-

tion, Topology and Geometry in Linear Spaces, Contemporary
Math. Volume 2, A.M.S., Providence, R.I., 1980.

|13| J. Diestel, Sequences and Series in Banach spaces, Sprin-
ger, Berlin, 1984.

|14] J. Diestel and J.J. Uhl Jr., Vector measures, American
Mathematical Society's Mathematical Surveys Volume 15, Pro
vidence, P.I. 1977.

|15] N. Dinculeanu, Vector measures, Pergamon Press, Oxford,
1967.

|16] I. Dobrakov, On representation of 1linear operators on
CO(T,X), Czechoslovak Math. Journ., 21 (1971), 13-30.

[17] C. Fierro, Compacidad débil en espacios de funciones y me-
didas vectoriales, Doctoral Thesis, Madrid, 1980.

|18| A. Grothendieck, Sur les applications linéaires faiblement
compacts d'espaces du type C(K), Canad. J. Of Math., 5
(1953), 129-173.

|19] N. Kalton, e. Saab and P. Saab, On the Dieudonné property
for C(Q,E)preprint.

|20] C. NOfiez, A conjecture about the Dunford-Pettis property,
preprint.

|21] S.S. Khurana, Grothendieck spaces, Illinois J. of Math.,
22 (1978), 79-80.




114

122]

1231

|24]

|25]

126

1271

A. Pelczynski, Banach spaces on which every unconditiona-
1ly converging operator 1is weakly compact, Bull. Acad.
Pol. Sci., 10 (1962), 641-648.

P. Saab, Weakly compact, unconditionally converging. and
Dunford;Pettis operators on spaces of vector-valued conti-

‘nuous functions, Math. Proc. Cambr. Phil. Soc., 95 (1984),

101-108. )

J. Sanchez, Operadores en reticulos de Banach, Thesis, Ma-

drid 1985.

C. Schwartz, Unconditionally converging and Dunford-Pettis

operators on CX(S), Studia Math., 57 (1976), 85-90.

M. Talagrand, La proprieté de Dunford-Pettis dans C(K,E)

et L1(E), Israel Journ. of Math., 44 (1983), 317-321.

D. Van Dulst, Reflexive and superreflexive Banach spces,

Mathematical Center Tracts no. 102, Amsterdam, 1978.

H.E. Lacey, The isometric theory of classical Banach spacesg

Springer, Berlin, 1974.-



