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INTRODUCTION

Let E be a real or complex normed linear space with unit sphere S={_er :
le:l} and let A>0, 0< €< 2. We say that E satisfies, respectively, the

properties PX ’Qs »Rg if

Py i %yeS, B dyl=lx-Ayl =  Ix+dylP=1422

2 L2
Q. : xy€8, Ixyl=¢ = Ix+yl%=4-¢
1,
R ¢ s(€)= 1-(1- £%/a)%
where §(£)= inf { 1-lx+yl/2 : x,ye s, |x—y|=£} denotes the modulus of

convexity of E.

It is well known that inner product spaces satisfy the above properties
for every A and & . On the other hand Borwein and Keener (4] and Nordlan-
der[10] conjecture, respectively, that either the fulfilment of PA or Rg for
any A or £ is a characteristic property of inner product spaces.

For A =¢ (4- Gz)—y2 the above properties are equivalent an;l?}are prove that
the mentioned conjectures are true for almost every A and £, but they are
false (at least when E is real and two dimensional) for A and ¢ belonging
to a countable and dense subset of R, and (0,2) respectively.

In particular we prove that the conjecture is true for the case A=2
specially considered in (4] in connection with some problems relative to
Chebyshev centers. With this and the paper of Amir and Mach [27] all the con-

jectures and open questions posed in [4] and (10] are solved.

RESULTS

PROPOSITION 1. The properties P , Q

R are equivalent when =
2,-% X
ga- €9)7".

£’ €
PROPOSITION 2. If E satisfies the property Pl for any A >0 such that
A ¢D={tan(kw/2n) : n=1,2,...; k=1,2,...,n-1}

then E is an inner product spacé.
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REMARK. If the unit sphere of a norm in RZ is invariant under rotations
of angle @®/2n, (n=2,3,...), and if A=tan(k T /2n), (k=1,2,...,n-1), then
such normed linear space satisfies the propertiy Py . Thus for every A€ D
there exist real 2-dimensional non inner product spaces satisfying the pro-
perty P,\ . This is the case of the linear space ]R2 endowed with the norm

whose unit sphere is the regular 4n-gon.

CONJECTURE. For every A >0 the property P3 characterizes the real inner

product spaces of dimension ¥ 3.
PROPOSITION 3. 2 ¢D.

REMARK. Following S. O. Carlsson [5] and R. C. James [7] we can say that
x is AI-orthogonal to y, x | y, when [x+ Ayl=]x- Ayl and that x is AP-

A
orthogonal to y , x J_ y , when [x+ ,ly|2=1+ 22.
AP

Then we can paraphrase the Proposition 2 by saying that for every 24D

the property

x,yes, x|y = x|
AL P

is characteristic of the inner product spaces.

y

With this formulation the Proposition 2 is in the line of many results
of characterization of inner product spaces based in the relation between

various tipes of generalized orthogonality in normed linear spaces [1], [6] ,

{sl, lel, (a1 .
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