SOME CHARACTERISTIC AND NON-CHARACTERISTIC PROPERTIES OF INNER PRODUCT SPACES

Javier Alonso and Carlos Benítez

Departamento de Matemáticas. Universidad de Extremadura
06071 BADAJOZ (Spain)

AMS Class.: 46B20, 46C10

INTRODUCTION

Let E be a real or complex normed linear space with unit sphere $S=\{x\in E: \|x\|=1\}$ and let $\lambda>0$, $0<\epsilon<2$. We say that E satisfies, respectively, the properties P_{λ} , Q_{ε} , R_{ε} if

$$P_{\lambda}: x, y \in S, \|x+\lambda y\| = \|x-\lambda y\| \implies \|x+\lambda y\|^2 = 1+\lambda^2$$

$$Q_{\varepsilon} : x,y \in S, |x-y| = \varepsilon \implies |x+y|^2 = 4 - \varepsilon^2$$

$$R_c : \delta(\epsilon) = 1 - (1 - \epsilon^2/4)^{\frac{1}{2}}$$

where $\delta(\varepsilon) = \inf \{ 1 - \|x + y\|/2 : x, y \in S, \|x - y\| = \varepsilon \}$ denotes the modulus of convexity of E.

It is well known that inner product spaces satisfy the above properties for every λ and ϵ . On the other hand Borwein and Keener [4] and Nordlander [10] conjecture, respectively, that either the fulfilment of P_{λ} or R_{ϵ} for any λ or ϵ is a characteristic property of inner product spaces.

For $\lambda = \varepsilon (4-\varepsilon^2)^{-\frac{1}{2}}$ the above properties are equivalent and we prove that the mentioned conjectures are true for almost every λ and ε , but they are false (at least when E is real and two dimensional) for λ and ε belonging to a countable and dense subset of \mathbf{R}_+ and (0,2) respectively.

In particular we prove that the conjecture is true for the case $\lambda=2$ specially considered in [4] in connection with some problems relative to Chebyshev centers. With this and the paper of Amir and Mach [2] all the conjectures and open questions posed in [4] and [10] are solved.

RESULTS

PROPOSITION 1. The properties P , Q , R $_{\xi}$ are equivalent when λ = $\xi(4-\ \epsilon^2)^{-\frac{1}{2}}.$

PROPOSITION 2. If E satisfies the property P_{λ} for any $\lambda > 0$ such that $\lambda \notin D = \big\{ \tan(k\pi/2n) : n=1,2,\ldots; k=1,2,\ldots,n-1 \big\}$ then E is an inner product space.

REMARK. If the unit sphere of a norm in \mathbb{R}^2 is invariant under rotations of angle $\pi/2n$, $(n=2,3,\ldots)$, and if $\lambda=\tan(k\pi/2n)$, $(k=1,2,\ldots,n-1)$, then such normed linear space satisfies the propertiy P_λ . Thus for every $\lambda\in D$ there exist real 2-dimensional non inner product spaces satisfying the property P_λ . This is the case of the linear space \mathbb{R}^2 endowed with the norm whose unit sphere is the regular 4n-gon.

CONJECTURE. For every $\lambda>0$ the property P_{λ} characterizes the real inner product spaces of dimension $\gg 3$.

PROPOSITION 3. 2 ∉D.

REMARK. Following S. O. Carlsson [5] and R. C. James [7] we can say that x is λI -orthogonal to y, x $\frac{1}{\lambda I}$ y, when $\|x + \lambda y\| = \|x - \lambda y\|$ and that x is λP -orthogonal to y, x $\frac{1}{\lambda P}$ y, when $\|x + \lambda y\|^2 = 1 + \lambda^2$.

Then we can paraphrase the Proposition 2 by saying that for every $\lambda \notin D$ the property

$$x, y \in S$$
, $x \stackrel{1}{\searrow} y \implies x \stackrel{1}{\searrow} y$

is characteristic of the inner product spaces.

With this formulation the Proposition 2 is in the line of many results of characterization of inner product spaces based in the relation between various tipes of generalized orthogonality in normed linear spaces [1], [6], [8], [9], [11].

REFERENCES

- 1. J. ALONSO. Ortogonalidad en Espacios Normados. Matemáticas, Universidad de Extremadura, 4, 1984.
- 2. D. AMIR and J. MACH. Chebyshev Centers in Normed Spaces. J. Approx. Theory 40 (1984) 364-374.
- 3. D. AMIR. Linear-Isometric Characterizations of Inner Product Spaces. Birkhäuser Verlag (to appear).
- 4. J. BORWEIN and L. KEENER. The Hausdorff Metric and Chebyshev Centers.
 J. Approx. Theory 28 (1980) 366-376.
- 5. S.O. CARLSSON. Orthogonality in Normed Linear Spaces. Arkiv för Matematik, band 4 nr 22 (1961) 297-318.
- M.M. DAY. Some Characterizations of Inner Product Spaces. Trans. Amer. Math. Soc. 62 (1947) 320-337.

- 7. R.C. JAMES. Orthogonality in Normed Linear Spaces. Duke Math. J. 12, (1945) 291-302.
- 8. O.P. KAPOOR and J. MATHUR. Some Geometric Characterizations of Inner Product Spaces. Bull. Aust. Math. Soc. 24 (1981) 239-246.
- 9. O.P. KAPOOR and J. PRASAD. Orthogonality and Characterizations of Inner Product Spaces. Bull. Aust. Math. Soc. 19 (1978) 403-416.
- 10. G. NORDLANDER. The Modulus of Convexity in Normed Linear Spaces. Arkiv för Mathem. 4 (1958) 15-17.
- 11. K. OHIRA. On some Characterizations of Abstract Euclidean Spaces by Properties of Orthogonality. Kumamoto J. Sci. A 1 (1952) 23-26.

(To appear in Journal of Approximation Theory.)